Math Problem Statement

The impulse response from a difference equation 𝑦(𝑛)βˆ’ 5 6 𝑦(π‘›βˆ’1)+ 1 6 𝑦(π‘›βˆ’2)=π‘₯(𝑛), using Fourier transforms, find: (i)The Frequency response H(Ω) (ii) The impulse response β„Ž(𝑛)

Solution

To solve for the frequency response H(Ξ©)H(\Omega) and the impulse response h(n)h(n) of the given difference equation using Fourier transforms, we will proceed as follows:

Given Difference Equation

y(n)βˆ’56y(nβˆ’1)+16y(nβˆ’2)=x(n)y(n) - \frac{5}{6} y(n-1) + \frac{1}{6} y(n-2) = x(n)

Step 1: Find the Frequency Response H(Ξ©)H(\Omega)

  1. Apply the Discrete-Time Fourier Transform (DTFT) to the equation.

    Let the DTFT of y(n)y(n) be Y(Ξ©)Y(\Omega) and the DTFT of x(n)x(n) be X(Ξ©)X(\Omega). Then, applying the DTFT to both sides of the difference equation: Y(Ξ©)βˆ’56Y(Ξ©)eβˆ’jΞ©+16Y(Ξ©)eβˆ’j2Ξ©=X(Ξ©)Y(\Omega) - \frac{5}{6} Y(\Omega) e^{-j\Omega} + \frac{1}{6} Y(\Omega) e^{-j2\Omega} = X(\Omega)

  2. Factor out Y(Ξ©)Y(\Omega): Y(Ξ©)[1βˆ’56eβˆ’jΞ©+16eβˆ’j2Ξ©]=X(Ξ©)Y(\Omega) \left[ 1 - \frac{5}{6} e^{-j\Omega} + \frac{1}{6} e^{-j2\Omega} \right] = X(\Omega)

  3. Express the Frequency Response H(Ξ©)H(\Omega): H(Ξ©)=Y(Ξ©)X(Ξ©)=11βˆ’56eβˆ’jΞ©+16eβˆ’j2Ξ©H(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{1}{1 - \frac{5}{6} e^{-j\Omega} + \frac{1}{6} e^{-j2\Omega}}

Thus, the frequency response H(Ξ©)H(\Omega) is: H(Ξ©)=11βˆ’56eβˆ’jΞ©+16eβˆ’j2Ξ©H(\Omega) = \frac{1}{1 - \frac{5}{6} e^{-j\Omega} + \frac{1}{6} e^{-j2\Omega}}

Step 2: Find the Impulse Response h(n)h(n)

The impulse response h(n)h(n) is the inverse DTFT of H(Ξ©)H(\Omega).

  1. Express H(Ξ©)H(\Omega) in a simpler form:

    To simplify H(Ξ©)H(\Omega), consider the characteristic equation: 1βˆ’56zβˆ’1+16zβˆ’2=01 - \frac{5}{6} z^{-1} + \frac{1}{6} z^{-2} = 0 This is a quadratic equation in zβˆ’1z^{-1}: z2βˆ’56z+16=0z^2 - \frac{5}{6} z + \frac{1}{6} = 0 Solve for the roots z1z_1 and z2z_2.

  2. Factor H(Ξ©)H(\Omega): H(Ξ©)=1(1βˆ’r1eβˆ’jΞ©)(1βˆ’r2eβˆ’jΞ©)H(\Omega) = \frac{1}{(1 - r_1 e^{-j\Omega})(1 - r_2 e^{-j\Omega})} where r1r_1 and r2r_2 are the roots.

  3. Inverse DTFT to find h(n)h(n):

    The impulse response h(n)h(n) will be the inverse DTFT of H(Ξ©)H(\Omega). If H(Ξ©)H(\Omega) can be decomposed into simpler fractions, the impulse response is typically a sum of exponentials: h(n)=A1r1nu(n)+A2r2nu(n)h(n) = A_1 r_1^n u(n) + A_2 r_2^n u(n) where u(n)u(n) is the unit step function, and A1A_1, A2A_2 are constants determined by partial fraction expansion.

Final Results:

  • (i) The Frequency Response H(Ξ©)H(\Omega): H(Ξ©)=11βˆ’56eβˆ’jΞ©+16eβˆ’j2Ξ©H(\Omega) = \frac{1}{1 - \frac{5}{6} e^{-j\Omega} + \frac{1}{6} e^{-j2\Omega}}

  • (ii) The Impulse Response h(n)h(n): The exact form depends on the roots r1r_1 and r2r_2, and would be a sum of exponential sequences based on these roots.

Would you like further details on how to compute h(n)h(n)

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Difference Equations
Fourier Transforms
Discrete-Time Fourier Transform (DTFT)
Inverse DTFT

Formulas

DTFT equations
Inverse DTFT equations

Theorems

-

Suitable Grade Level

Advanced College Level