Math Problem Statement

The impulse response from a difference equation 𝑦(𝑛)− 5 6 𝑦(𝑛−1)+ 1 6 𝑦(𝑛−2)=𝑥(𝑛), using Fourier transforms, find: (i)The Frequency response H(Ω) (ii) The impulse response ℎ(𝑛)

Solution

To solve for the frequency response H(Ω)H(\Omega) and the impulse response h(n)h(n) of the given difference equation using Fourier transforms, we will proceed as follows:

Given Difference Equation

y(n)56y(n1)+16y(n2)=x(n)y(n) - \frac{5}{6} y(n-1) + \frac{1}{6} y(n-2) = x(n)

Step 1: Find the Frequency Response H(Ω)H(\Omega)

  1. Apply the Discrete-Time Fourier Transform (DTFT) to the equation.

    Let the DTFT of y(n)y(n) be Y(Ω)Y(\Omega) and the DTFT of x(n)x(n) be X(Ω)X(\Omega). Then, applying the DTFT to both sides of the difference equation: Y(Ω)56Y(Ω)ejΩ+16Y(Ω)ej2Ω=X(Ω)Y(\Omega) - \frac{5}{6} Y(\Omega) e^{-j\Omega} + \frac{1}{6} Y(\Omega) e^{-j2\Omega} = X(\Omega)

  2. Factor out Y(Ω)Y(\Omega): Y(Ω)[156ejΩ+16ej2Ω]=X(Ω)Y(\Omega) \left[ 1 - \frac{5}{6} e^{-j\Omega} + \frac{1}{6} e^{-j2\Omega} \right] = X(\Omega)

  3. Express the Frequency Response H(Ω)H(\Omega): H(Ω)=Y(Ω)X(Ω)=1156ejΩ+16ej2ΩH(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{1}{1 - \frac{5}{6} e^{-j\Omega} + \frac{1}{6} e^{-j2\Omega}}

Thus, the frequency response H(Ω)H(\Omega) is: H(Ω)=1156ejΩ+16ej2ΩH(\Omega) = \frac{1}{1 - \frac{5}{6} e^{-j\Omega} + \frac{1}{6} e^{-j2\Omega}}

Step 2: Find the Impulse Response h(n)h(n)

The impulse response h(n)h(n) is the inverse DTFT of H(Ω)H(\Omega).

  1. Express H(Ω)H(\Omega) in a simpler form:

    To simplify H(Ω)H(\Omega), consider the characteristic equation: 156z1+16z2=01 - \frac{5}{6} z^{-1} + \frac{1}{6} z^{-2} = 0 This is a quadratic equation in z1z^{-1}: z256z+16=0z^2 - \frac{5}{6} z + \frac{1}{6} = 0 Solve for the roots z1z_1 and z2z_2.

  2. Factor H(Ω)H(\Omega): H(Ω)=1(1r1ejΩ)(1r2ejΩ)H(\Omega) = \frac{1}{(1 - r_1 e^{-j\Omega})(1 - r_2 e^{-j\Omega})} where r1r_1 and r2r_2 are the roots.

  3. Inverse DTFT to find h(n)h(n):

    The impulse response h(n)h(n) will be the inverse DTFT of H(Ω)H(\Omega). If H(Ω)H(\Omega) can be decomposed into simpler fractions, the impulse response is typically a sum of exponentials: h(n)=A1r1nu(n)+A2r2nu(n)h(n) = A_1 r_1^n u(n) + A_2 r_2^n u(n) where u(n)u(n) is the unit step function, and A1A_1, A2A_2 are constants determined by partial fraction expansion.

Final Results:

  • (i) The Frequency Response H(Ω)H(\Omega): H(Ω)=1156ejΩ+16ej2ΩH(\Omega) = \frac{1}{1 - \frac{5}{6} e^{-j\Omega} + \frac{1}{6} e^{-j2\Omega}}

  • (ii) The Impulse Response h(n)h(n): The exact form depends on the roots r1r_1 and r2r_2, and would be a sum of exponential sequences based on these roots.

Would you like further details on how to compute h(n)h(n)

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Difference Equations
Fourier Transforms
Discrete-Time Fourier Transform (DTFT)
Inverse DTFT

Formulas

DTFT equations
Inverse DTFT equations

Theorems

-

Suitable Grade Level

Advanced College Level