Math Problem Statement

Suppose that  f '(x) =
((√ x) − 2)/ x4 for x > 0, and that f (1) = 0. Find  f (4).

Solution

To find f(4)f(4) given that f(x)=x2x4f'(x) = \frac{\sqrt{x} - 2}{x^4} and f(1)=0f(1) = 0, we first need to integrate f(x)f'(x) to obtain f(x)f(x).

  1. Integrate f(x)f'(x):

f(x)=x2x4=x1/2x42x4=x7/22x4f'(x) = \frac{\sqrt{x} - 2}{x^4} = \frac{x^{1/2}}{x^4} - \frac{2}{x^4} = x^{-7/2} - 2x^{-4}

Now, we can integrate each term separately:

f(x)=(x7/22x4)dxf(x) = \int \left( x^{-7/2} - 2x^{-4} \right) \, dx

Calculating the integrals:

x7/2dx=x5/25/2=25x5/2\int x^{-7/2} \, dx = \frac{x^{-5/2}}{-5/2} = -\frac{2}{5} x^{-5/2}

2x4dx=2x33=23x3\int -2x^{-4} \, dx = -2 \cdot \frac{x^{-3}}{-3} = \frac{2}{3} x^{-3}

So we have:

f(x)=25x5/2+23x3+Cf(x) = -\frac{2}{5} x^{-5/2} + \frac{2}{3} x^{-3} + C

where CC is a constant.

  1. Find the constant CC using the initial condition f(1)=0f(1) = 0:

Substituting x=1x = 1:

f(1)=2515/2+2313+C=0f(1) = -\frac{2}{5} \cdot 1^{-5/2} + \frac{2}{3} \cdot 1^{-3} + C = 0

This simplifies to:

25+23+C=0-\frac{2}{5} + \frac{2}{3} + C = 0

Finding a common denominator (15):

615+1015+C=0-\frac{6}{15} + \frac{10}{15} + C = 0

This gives:

C=415C = -\frac{4}{15}

So the function f(x)f(x) is:

f(x)=25x5/2+23x3415f(x) = -\frac{2}{5} x^{-5/2} + \frac{2}{3} x^{-3} - \frac{4}{15}

  1. Now, evaluate f(4)f(4):

Substituting x=4x = 4:

f(4)=25(45/2)+23(43)415f(4) = -\frac{2}{5} (4^{-5/2}) + \frac{2}{3} (4^{-3}) - \frac{4}{15}

Calculating each term:

45/2=1(45/2)=1324^{-5/2} = \frac{1}{(4^{5/2})} = \frac{1}{32}

43=1644^{-3} = \frac{1}{64}

Thus,

f(4)=25132+23164415f(4) = -\frac{2}{5} \cdot \frac{1}{32} + \frac{2}{3} \cdot \frac{1}{64} - \frac{4}{15}

Calculating the first term:

2532=2160=180-\frac{2}{5 \cdot 32} = -\frac{2}{160} = -\frac{1}{80}

Calculating the second term:

2364=2192=196\frac{2}{3 \cdot 64} = \frac{2}{192} = \frac{1}{96}

Now we have:

f(4)=180+196415f(4) = -\frac{1}{80} + \frac{1}{96} - \frac{4}{15}

Finding a common denominator for 8080, 9696, and 1515, which is 480480:

Converting each fraction:

180=6480,196=5480,415=128480-\frac{1}{80} = -\frac{6}{480}, \quad \frac{1}{96} = \frac{5}{480}, \quad -\frac{4}{15} = -\frac{128}{480}

So:

f(4)=6480+5480128480=6+5128480=129480f(4) = -\frac{6}{480} + \frac{5}{480} - \frac{128}{480} = \frac{-6 + 5 - 128}{480} = \frac{-129}{480}

Thus, the final result is:

f(4)=129480f(4) = -\frac{129}{480}

Would you like further details or have any questions? Here are some related questions you might consider:

  1. How do you find f(x)f'(x) from f(x)f(x)?
  2. What are the implications of the constant CC in the integration process?
  3. Can you explain the process of finding a common denominator in detail?
  4. How would you approach finding f(a)f(a) for other values of aa?
  5. What is the significance of the initial condition in this problem?

Tip: Always check your integration constants against given conditions to ensure correctness.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Differential Equations

Formulas

f'(x) = (√x - 2) / x^4
Integration of power functions

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12