Math Problem Statement

Знайдіть область визначення функції: 1) f(x) = \frac{x + 3}{x - 4}; 4) f(x) = \sqrt{x - 1} + \sqrt{x - 3}

Solution

The task is to find the domain of the given functions:

  1. f(x)=x+3x4f(x) = \frac{x + 3}{x - 4}
  2. f(x)=x1+x3f(x) = \sqrt{x - 1} + \sqrt{x - 3}

Let's determine the domain for each function:

1. Function: f(x)=x+3x4f(x) = \frac{x + 3}{x - 4}

The domain of a rational function excludes values that make the denominator zero. For this function, we need to find when the denominator is zero:

x4=0    x=4x - 4 = 0 \implies x = 4

Thus, the domain is all real numbers except x=4x = 4.

Domain: xR,x4x \in \mathbb{R}, x \neq 4.

2. Function: f(x)=x1+x3f(x) = \sqrt{x - 1} + \sqrt{x - 3}

The domain of this function depends on the values inside the square roots being non-negative. We set up the conditions:

  1. For x1\sqrt{x - 1}: x10    x1x - 1 \geq 0 \implies x \geq 1

  2. For (

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Rational Functions
Square Root Functions
Domain of Functions

Formulas

For rational functions: Denominator ≠ 0
For square root functions: Expression under square root ≥ 0

Theorems

Domain theorem for rational functions
Domain theorem for square root functions

Suitable Grade Level

Grades 9-11