Math Problem Statement

A = [3 6 4 x] B = [5 -2 3 4] find det(5A^-1,B^t) = 5

Solution

To find the value of xx such that the determinant of 5A15A^{-1} and BtB^t equals 5, we need to break this down step-by-step:

Given matrices:

A=[364x],B=[5234]A = \begin{bmatrix} 3 & 6 \\ 4 & x \end{bmatrix}, \quad B = \begin{bmatrix} 5 & -2 \\ 3 & 4 \end{bmatrix}

And the equation is:

det(5A1,Bt)=5\text{det}(5A^{-1}, B^t) = 5

Step 1: Finding A1A^{-1}

First, let's compute the inverse of AA. The formula for the inverse of a 2x2 matrix is:

A1=1det(A)[dbca]A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}

where the matrix A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.

For A=[364x]A = \begin{bmatrix} 3 & 6 \\ 4 & x \end{bmatrix}:

  • a=3a = 3
  • b=6b = 6
  • c=4c = 4
  • d=xd = x

The determinant of AA is:

det(A)=(3)(x)(6)(4)=3x24\text{det}(A) = (3)(x) - (6)(4) = 3x - 24

Thus,

A1=13x24[x643]A^{-1} = \frac{1}{3x - 24} \begin{bmatrix} x & -6 \\ -4 & 3 \end{bmatrix}

Step 2: Finding 5A15A^{-1}

Now, multiply A1A^{-1} by 5:

5A1=53x24[x643]5A^{-1} = \frac{5}{3x - 24} \begin{bmatrix} x & -6 \\ -4 & 3 \end{bmatrix}

Step 3: Compute the determinant of 5A15A^{-1} and BtB^t

The next step involves finding the determinant of 5A15A^{-1} and BtB^t, where BtB^t is the transpose of matrix BB.

Bt=[5324]B^t = \begin{bmatrix} 5 & 3 \\ -2 & 4 \end{bmatrix}

Now, we compute the determinant of 5A1,Bt5A^{-1}, B^t, which means finding the determinant of the matrix:

det(53x24[x643],[5324])\text{det} \left( \frac{5}{3x - 24} \begin{bmatrix} x & -6 \\ -4 & 3 \end{bmatrix}, \begin{bmatrix} 5 & 3 \\ -2 & 4 \end{bmatrix} \right)

To match the condition that det(5A1,Bt)=5\text{det}(5A^{-1}, B^t) = 5, we can solve for xx.

Let me calculate this determinant next.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Inversion
Determinants

Formulas

Inverse of a 2x2 matrix: A^{-1} = (1/det(A)) * [d, -b; -c, a]
Determinant of a 2x2 matrix: det(A) = ad - bc
Matrix Transposition: B^t

Theorems

Determinant Theorem
Matrix Inverse Theorem

Suitable Grade Level

Grades 10-12