Math Problem Statement

Find the volume of the solid obtained by rotating the region between y=x^(2)+1 and y-x-3=0 about the x-axis.

Solution

To find the volume of the solid obtained by rotating the region between the curves y=x2+1y = x^2 + 1 and y=x+3y = x + 3 about the xx-axis, we can use the method of cylindrical shells or the disk method. Here, we will use the disk method.

Steps:

  1. Find the points of intersection:

Set the two functions equal to each other to find the points of intersection: x2+1=x+3x^2 + 1 = x + 3 x2x2=0x^2 - x - 2 = 0 (x2)(x+1)=0(x - 2)(x + 1) = 0

Thus, the points of intersection are x=2x = 2 and x=1x = -1.

  1. Set up the integral using the disk method:

The volume VV of the solid of revolution about the xx-axis is given by: V=πab[R(x)2r(x)2]dxV = \pi \int_{a}^{b} \left[ R(x)^2 - r(x)^2 \right] dx where R(x)R(x) is the outer radius and r(x)r(x) is the inner radius. For this problem, R(x)R(x) is the upper function y=x+3y = x + 3 and r(x)r(x) is the lower function y=x2+1y = x^2 + 1.

  1. Determine the limits of integration:

The limits of integration are from x=1x = -1 to x=2x = 2.

  1. Set up and evaluate the integral:

V=π12[(x+3)2(x2+1)2]dxV = \pi \int_{-1}^{2} [(x + 3)^2 - (x^2 + 1)^2] \, dx

Expanding the terms inside the integral:

(x+3)2=x2+6x+9(x + 3)^2 = x^2 + 6x + 9 (x2+1)2=x4+2x2+1(x^2 + 1)^2 = x^4 + 2x^2 + 1

Thus, the integral becomes:

V=π12[x2+6x+9(x4+2x2+1)]dxV = \pi \int_{-1}^{2} [x^2 + 6x + 9 - (x^4 + 2x^2 + 1)] \, dx =π12[x4x2+6x+8]dx= \pi \int_{-1}^{2} [-x^4 - x^2 + 6x + 8] \, dx

Now, we integrate each term separately:

12x4dx=[x55]12\int_{-1}^{2} -x^4 \, dx = \left[ -\frac{x^5}{5} \right]_{-1}^{2} 12x2dx=[x33]12\int_{-1}^{2} -x^2 \, dx = \left[ -\frac{x^3}{3} \right]_{-1}^{2} 126xdx=[3x2]12\int_{-1}^{2} 6x \, dx = \left[ 3x^2 \right]_{-1}^{2} 128dx=[8x]12\int_{-1}^{2} 8 \, dx = \left[ 8x \right]_{-1}^{2}

Evaluating each integral at the bounds:

[x55]12=(255)((1)55)=325+15=315\left[ -\frac{x^5}{5} \right]_{-1}^{2} = \left( -\frac{2^5}{5} \right) - \left( -\frac{(-1)^5}{5} \right) = -\frac{32}{5} + \frac{1}{5} = -\frac{31}{5} [x33]12=(233)((1)33)=83+13=73\left[ -\frac{x^3}{3} \right]_{-1}^{2} = \left( -\frac{2^3}{3} \right) - \left( -\frac{(-1)^3}{3} \right) = -\frac{8}{3} + \frac{1}{3} = -\frac{7}{3} [3x2]12=3(22)3((1)2)=123=9\left[ 3x^2 \right]_{-1}^{2} = 3(2^2) - 3((-1)^2) = 12 - 3 = 9 [8x]12=8(2)8(1)=16+8=24\left[ 8x \right]_{-1}^{2} = 8(2) - 8(-1) = 16 + 8 = 24

Adding these results together:

V=π(31573+9+24)V = \pi \left( -\frac{31}{5} - \frac{7}{3} + 9 + 24 \right)

Finding a common denominator (15):

315=9315-\frac{31}{5} = -\frac{93}{15} 73=3515-\frac{7}{3} = -\frac{35}{15} 9=135159 = \frac{135}{15} 24=3601524 = \frac{360}{15}

So the integral evaluates to:

V=π(93153515+13515+36015)V = \pi \left( -\frac{93}{15} - \frac{35}{15} + \frac{135}{15} + \frac{360}{15} \right) =π(9335+135+36015)= \pi \left( \frac{-93 - 35 + 135 + 360}{15} \right) =π(36715)= \pi \left( \frac{367}{15} \right) =367π15= \frac{367\pi}{15}

Thus, the volume of the solid is:

367π15\boxed{\frac{367\pi}{15}}

If you have any questions or need further details, let me know!

Here are 5 questions you might want to ask next:

  1. How do you find the surface area of a solid of revolution?
  2. What is the method of integration by parts in calculus?
  3. Can you explain the Mean Value Theorem?
  4. How do you solve a differential equation using separation of variables?
  5. What are the properties of indefinite integrals?

Tip: When rotating regions around the axis, always visualize the solid and set up the correct limits of integration to ensure accurate results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Solid of Revolution
Disk Method
Integral Calculus

Formulas

Volume of a solid of revolution using disk method

Theorems

-

Suitable Grade Level

College