Math Problem Statement

Let v1 = [3, -15], v2 = [-13, 3], and S = [[1, 15], [-1, -14]]. Find vectors u1 and u2 in R^2 such that S is the transition matrix from {v1, v2} to {u1, u2}.

Solution

The problem is to find vectors u1u_1 and u2u_2 in R2\mathbb{R}^2 such that the given matrix SS is the transition matrix from the basis {v1,v2}\{v_1, v_2\} to the basis {u1,u2}\{u_1, u_2\}.

Given:

  • v1=[315]v_1 = \begin{bmatrix} 3 \\ -15 \end{bmatrix}, v2=[133]v_2 = \begin{bmatrix} -13 \\ 3 \end{bmatrix}
  • S=[115114]S = \begin{bmatrix} 1 & 15 \\ -1 & -14 \end{bmatrix}

The formula to find u1u_1 and u2u_2 is: [u1u2]=[v1v2]S\begin{bmatrix} u_1 & u_2 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \cdot S

Calculation:

  1. Construct the matrix [v1v2]\begin{bmatrix} v_1 & v_2 \end{bmatrix}: [ \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 3 & -13 \ -15 & 3 \end{bmatrix}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Change of Basis
Matrix Multiplication

Formulas

[u1, u2] = [v1, v2] * S

Theorems

Matrix Representation of Change of Basis

Suitable Grade Level

College Level