Math Problem Statement

Diketahui A = B x C, nilai A = 4i - 2j + 12 k dan nilai C adalah 4i + 8j + 6k. Maka tentukan nilai vektor B dari perkalian vektor tersebut

Solution

Diketahui persamaan vektor:

A=B×CA = B \times C

dengan:

A=4i2j+12kdanC=4i+8j+6k.A = 4i - 2j + 12k \quad \text{dan} \quad C = 4i + 8j + 6k.

Kita perlu mencari vektor BB menggunakan persamaan cross product A=B×CA = B \times C. Untuk itu, kita dapat menggunakan rumus umum perkalian silang dua vektor dalam bentuk determinan:

B×C=i^j^k^BxByBzCxCyCzB \times C = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}

Vektor CC memiliki komponen Cx=4C_x = 4, Cy=8C_y = 8, dan Cz=6C_z = 6. Vektor AA adalah hasil dari perkalian silang, sehingga kita harus menyelesaikan sistem persamaan untuk menemukan komponen BxB_x, ByB_y, dan BzB_z.

Mari kita selesaikan langkah demi langkah dengan menghitung komponen vektor BB.There was an error when attempting to calculate the cross product. I'll correct this by recalculating the cross product manually and solving for the components of BB.

The cross product B×CB \times C can be computed using the determinant of the matrix formed by the unit vectors and the components of BB and CC. I'll now proceed with that correction.It appears that the system of equations doesn't yield a unique solution, which suggests that the vectors AA and CC may not be fully independent, and no unique solution exists for vector BB based on the provided information. This can occur in certain cases, such as when the vectors AA and CC are parallel or when the cross product yields a result that doesn't fit the given conditions.

If you'd like, I can explore alternative interpretations or recheck the conditions. Do you have any further details, or should we proceed with more general questions on this topic?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Cross Product
Linear Systems

Formulas

Cross product of two vectors: A = B x C
Determinant formula for cross product: B x C = |i j k| / |Bx By Bz| / |Cx Cy Cz|

Theorems

Cross Product Theorem
Vector Determinant Method

Suitable Grade Level

Undergraduate or Advanced High School (Grades 11-12)