Math Problem Statement

A=2i-3j+k, B=j-k find (2a-b)X(a+b)

Solution

Given vectors:

A=2i3j+k\mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k} B=jk\mathbf{B} = \mathbf{j} - \mathbf{k}

We are asked to find (2AB)×(A+B)(2\mathbf{A} - \mathbf{B}) \times (\mathbf{A} + \mathbf{B}).

Step 1: Calculate 2AB2\mathbf{A} - \mathbf{B}

First, scale A\mathbf{A} by 2: 2A=2(2i3j+k)=4i6j+2k2\mathbf{A} = 2(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) = 4\mathbf{i} - 6\mathbf{j} + 2\mathbf{k} Now subtract B\mathbf{B}: 2AB=(4i6j+2k)(jk)=4i7j+3k2\mathbf{A} - \mathbf{B} = (4\mathbf{i} - 6\mathbf{j} + 2\mathbf{k}) - (\mathbf{j} - \mathbf{k}) = 4\mathbf{i} - 7\mathbf{j} + 3\mathbf{k}

Step 2: Calculate A+B\mathbf{A} + \mathbf{B}

Now add A\mathbf{A} and B\mathbf{B}: A+B=(2i3j+k)+(jk)=2i2j\mathbf{A} + \mathbf{B} = (2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) + (\mathbf{j} - \mathbf{k}) = 2\mathbf{i} - 2\mathbf{j}

Step 3: Cross Product (2AB)×(A+B)(2\mathbf{A} - \mathbf{B}) \times (\mathbf{A} + \mathbf{B})

Now calculate the cross product between the vectors (4i7j+3k)(4\mathbf{i} - 7\mathbf{j} + 3\mathbf{k}) and (2i2j)(2\mathbf{i} - 2\mathbf{j}).

We can compute the cross product using the determinant method: v×w=ijk473220\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -7 & 3 \\ 2 & -2 & 0 \end{vmatrix}

Expanding this determinant: =i7320j4320+k4722= \mathbf{i} \begin{vmatrix} -7 & 3 \\ -2 & 0 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 4 & 3 \\ 2 & 0 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 4 & -7 \\ 2 & -2 \end{vmatrix}

Now calculate each 2x2 determinant:

7320=(7)(0)(3)(2)=6\begin{vmatrix} -7 & 3 \\ -2 & 0 \end{vmatrix} = (-7)(0) - (3)(-2) = 6 4320=(4)(0)(3)(2)=6\begin{vmatrix} 4 & 3 \\ 2 & 0 \end{vmatrix} = (4)(0) - (3)(2) = -6 4722=(4)(2)(7)(2)=8+14=6\begin{vmatrix} 4 & -7 \\ 2 & -2 \end{vmatrix} = (4)(-2) - (-7)(2) = -8 + 14 = 6

Substitute these back into the cross product expression:

=i(6)j(6)+k(6)= \mathbf{i}(6) - \mathbf{j}(-6) + \mathbf{k}(6) =6i+6j+6k= 6\mathbf{i} + 6\mathbf{j} + 6\mathbf{k}

Final Result:

(2AB)×(A+B)=6i+6j+6k(2\mathbf{A} - \mathbf{B}) \times (\mathbf{A} + \mathbf{B}) = 6\mathbf{i} + 6\mathbf{j} + 6\mathbf{k}


Would you like further explanation on any step or to explore related topics?

Here are some related questions:

  1. How do you compute the cross product of two vectors geometrically?
  2. How does the cross product relate to the area of a parallelogram?
  3. Can you explain the distributive property of the cross product in more detail?
  4. How do you handle cross products with unit vectors like i\mathbf{i}, j\mathbf{j}, and k\mathbf{k}?
  5. What happens if two vectors are parallel in a cross product?

Tip: The cross product is always perpendicular to the plane formed by the two original vectors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Cross Product
Vector Addition
Vector Scaling

Formulas

Cross product formula: (a × b) = |i j k| |a1 a2 a3| |b1 b2 b3|
Distributive property of the cross product: (a-b) × (c+d) = a×c + a×d - b×c - b×d

Theorems

Cross Product of Vectors
Distributive Property of Cross Product

Suitable Grade Level

Grades 11-12