Math Problem Statement

If a + b + c = 10, a^2 + b^2 + c^2 = 50 and abc = 9, then find the value of a^3 + b^3 + c^3.

Solution

To solve for a3+b3+c3a^3 + b^3 + c^3 given the following conditions:

  1. a+b+c=10a + b + c = 10
  2. a2+b2+c2=50a^2 + b^2 + c^2 = 50
  3. abc=9abc = 9

We can use the identity: a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)

We know that: a3+b3+c3=(a+b+c)(a2+b2+c2abbcca)+3abca^3 + b^3 + c^3 = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) + 3abc

First, calculate ab+bc+caab + bc + ca using the identity: (a+b+c)2=a2+b2+c2+2(ab+bc+ca)(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) Substitute the known values: 102=50+2(ab+bc+ca)10^2 = 50 + 2(ab + bc + ca) 100=50+2(ab+bc+ca)100 = 50 + 2(ab + bc + ca) 50=2(ab+bc+ca)50 = 2(ab + bc + ca) ab+bc+ca=25ab + bc + ca = 25

Now we can substitute into our main equation: a3+b3+c3=(10)(5025)+3×9a^3 + b^3 + c^3 = (10)(50 - 25) + 3 \times 9 a3+b3+c3=10×25+27a^3 + b^3 + c^3 = 10 \times 25 + 27 a3+b3+c3=250+27a^3 + b^3 + c^3 = 250 + 27 a3+b3+c3=277a^3 + b^3 + c^3 = 277

Thus, the value of a3+b3+c3a^3 + b^3 + c^3 is 277.

Would you like further clarification on any step?

Related Questions:

  1. How does the identity for a3+b3+c33abca^3 + b^3 + c^3 - 3abc work in general?
  2. Can this approach be applied if abcabc were a negative value?
  3. How would the solution change if a+b+ca + b + c had a different value?
  4. What other identities might simplify problems involving powers of variables?
  5. How do we derive the identity involving a3+b3+c3a^3 + b^3 + c^3?

Tip: Always verify whether the identities are applicable under given constraints.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomials
Identities

Formulas

a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)

Theorems

Cubic identity

Suitable Grade Level

Grades 10-12