Math Problem Statement

Find the set P(P(P(P(∅)))), where P(S) denotes the power set of the set S. Show all steps. That is, start with ∅, then find P(∅), then find P(P(∅)), etc.

Solution

To solve the problem, we need to find P(P(P(P()))))\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))))), where P(S)\mathcal{P}(S) denotes the power set of the set SS. Let's go through the steps carefully:

Step 1: Start with \emptyset (the empty set)

The empty set is denoted as: ={}\emptyset = \{\}

Step 2: Find P()\mathcal{P}(\emptyset)

The power set of a set is the set of all its subsets. The only subset of \emptyset is \emptyset itself. Thus, the power set of \emptyset is: P()={}\mathcal{P}(\emptyset) = \{\emptyset\}

Step 3: Find P(P())\mathcal{P}(\mathcal{P}(\emptyset))

Now, we need to find the power set of P()={}\mathcal{P}(\emptyset) = \{\emptyset\}. The subsets of {}\{\emptyset\} are:

  • \emptyset (the empty subset)
  • {}\{\emptyset\} (the set itself)

So, the power set is: P(P())={,{}}\mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\}

Step 4: Find P(P(P()))\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))

Now, we find the power set of P(P())={,{}}\mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\}. The subsets of this set are:

  • \emptyset (the empty subset)
  • {}\{\emptyset\}
  • {{}}\{\{\emptyset\}\}
  • {,{}}\{\emptyset, \{\emptyset\}\}

So, the power set is: P(P(P()))={,{},{{}},{,{}}}\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}

Step 5: Find P(P(P(P())))\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))))

Finally, we find the power set of P(P(P()))={,{},{{}},{,{}}}\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}. The subsets of this set are:

  • \emptyset
  • {}\{\emptyset\}
  • {{}}\{\{\emptyset\}\}
  • {,{}}\{\emptyset, \{\emptyset\}\}
  • {{{}}}\{\{\{\emptyset\}\}\}
  • {,{{}}}\{\emptyset, \{\{\emptyset\}\}\}
  • {{},{{}}}\{\{\emptyset\}, \{\{\emptyset\}\}\}
  • {,{},{{}}}\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}

Thus, the final power set is: P(P(P(P())))={,{},{{}},{,{}},{{{}}},{,{{}}},{{},{{}}},{,{},{{}}}}\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \{\{\{\emptyset\}\}\}, \{\emptyset, \{\{\emptyset\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}

Would you like more details or clarification on any of these steps?

Here are 5 related questions to expand on this:

  1. How is the power set defined for any set?
  2. What are the elements of the power set of a set with 3 elements?
  3. How many elements does the power set of a set with nn elements have?
  4. What is the relationship between the cardinality of a set and the cardinality of its power set?
  5. Can you find the power set of a non-empty set, say {1,2}\{1, 2\}?

Tip: The cardinality of the power set P(S)\mathcal{P}(S) of a set SS with nn elements is always 2n2^n, since every element of SS can either be included or not included in a subset.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set Theory
Power Sets

Formulas

Power set formula: P(S) = {All subsets of S}

Theorems

Power Set Theorem: If a set has n elements, its power set has 2^n elements

Suitable Grade Level

University/Advanced High School