Math Problem Statement

f(x)=\dfrac{1}{1+6x}Find a power series for [f].

Choose 1 answer:

Choose 1 answer:

(Choice A)   

[1+6x+36x^2+\ldots +6^n x ^n+\ldots]

A

[1+6x+36x^2+\ldots +6^n x ^n+\ldots]

(Choice B)   

[1+6x-36x^2+\ldots +(-6)^n x ^n+\ldots]

B

[1+6x-36x^2+\ldots +(-6)^n x ^n+\ldots]

(Choice C)   

[1-6x-36x^2+\ldots -6^n x ^{n}+\ldots]

C

[1-6x-36x^2+\ldots -6^n x ^{n}+\ldots]

(Choice D)   

[1-6x+36x^2+\ldots +(-6)^n x ^{n}+\ldots]

D

[1-6x+36x^2+\ldots +(-6)^n x ^{n}+\ldots]

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Power Series
Geometric Series
Series Expansion

Formulas

Geometric series formula: \( \frac{1}{1 - r} = 1 + r + r^2 + r^3 + \ldots \)

Theorems

-

Suitable Grade Level

Advanced Mathematics