Math Problem Statement
f(x)=\dfrac{1}{1+6x}Find a power series for [f].
Choose 1 answer:
Choose 1 answer:
(Choice A)
[1+6x+36x^2+\ldots +6^n x ^n+\ldots]
A
[1+6x+36x^2+\ldots +6^n x ^n+\ldots]
(Choice B)
[1+6x-36x^2+\ldots +(-6)^n x ^n+\ldots]
B
[1+6x-36x^2+\ldots +(-6)^n x ^n+\ldots]
(Choice C)
[1-6x-36x^2+\ldots -6^n x ^{n}+\ldots]
C
[1-6x-36x^2+\ldots -6^n x ^{n}+\ldots]
(Choice D)
[1-6x+36x^2+\ldots +(-6)^n x ^{n}+\ldots]
D
[1-6x+36x^2+\ldots +(-6)^n x ^{n}+\ldots]
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Power Series
Geometric Series
Series Expansion
Formulas
Geometric series formula: \( \frac{1}{1 - r} = 1 + r + r^2 + r^3 + \ldots \)
Theorems
-
Suitable Grade Level
Advanced Mathematics