Math Problem Statement
Punkterne A og B er givet ved: A(0;0;2,3) og B(8,6;-3,25;0) tagets højeste punkt kaldes T. vektor AB = (8,6;-3,25;-2,3). Linjen l som går gennem punkterne B og T har parameterfremstillingen l:(x,y,z)=(8,6;-3,25;0)+t*(6,2;6,5;13,2). Trekant ABT ligger i planen a. bestem en ligning for a
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Geometry
Planes in 3D
Cross Product
Formulas
Vector AB = B - A
Cross product of vectors: \( \vec{AB} \times \vec{AT} \)
Equation of a plane: n_x(x - x_0) + n_y(y - y_0) + n_z(z - z_0) = 0
Theorems
Cross Product Theorem
Equation of a Plane in 3D
Suitable Grade Level
Grade 11-12 (High School Advanced Mathematics)
Related Recommendation
Find the Equation of a Plane through Three Points (4, 3, 5), (1, 2, 0), (1, 0, 2)
Find the Equation of a Plane through Points (1,-2,3), (5,1,1), and (3,-3,1)
Find Equation of Plane Passing Through Given Points and Perpendicular to Another Plane
Find Equation of Plane Passing Through Point Perpendicular to Given Vector/Line
Find the Equation of a Plane Passing Through a Point and a Line