Math Problem Statement

Without using Truth table find the PCNF and PDNF of (P->(Q^R)) ^ (7P->(7Q ^ 7R)).

Solution

To find the Principal Conjunctive Normal Form (PCNF) and Principal Disjunctive Normal Form (PDNF) of the expression (P(QR))(¬P(¬Q¬R))(P \rightarrow (Q \land R)) \land (\neg P \rightarrow (\neg Q \land \neg R)), we can follow a systematic approach.

Step 1: Express the implications in terms of disjunctions

Recall that PAP \rightarrow A is equivalent to ¬PA\neg P \lor A.

  1. First Implication:
    P(QR)¬P(QR)P \rightarrow (Q \land R) \equiv \neg P \lor (Q \land R)
  2. Second Implication:
    ¬P(¬Q¬R)¬(¬P)(¬Q¬R)P(¬Q¬R)\neg P \rightarrow (\neg Q \land \neg R) \equiv \neg(\neg P) \lor (\neg Q \land \neg R) \equiv P \lor (\neg Q \land \neg R)

Step 2: Substitute these into the original expression

The expression now becomes: (¬P(QR))(P(¬Q¬R))(\neg P \lor (Q \land R)) \land (P \lor (\neg Q \land \neg R))

Step 3: Distribute the conjunction over disjunctions

We expand the expression by applying the distributive property:

  1. Distribute the first term:
    (¬P(QR))(¬PQ)(¬PR)(\neg P \lor (Q \land R)) \equiv (\neg P \lor Q) \land (\neg P \lor R)
  2. Distribute the second term:
    (P(¬Q¬R))(P¬Q)(P¬R)(P \lor (\neg Q \land \neg R)) \equiv (P \lor \neg Q) \land (P \lor \neg R)

Now, the overall expression is: ((¬PQ)(¬PR))((P¬Q)(P¬R))((\neg P \lor Q) \land (\neg P \lor R)) \land ((P \lor \neg Q) \land (P \lor \neg R))

Step 4: Combine all the conjunctions

This expression is already in the form of a conjunction of disjunctions, which is suitable for PCNF: PCNF: (¬PQ)(¬PR)(P¬Q)(P¬R)\text{PCNF: } (\neg P \lor Q) \land (\neg P \lor R) \land (P \lor \neg Q) \land (P \lor \neg R)

Step 5: Express the disjunctions as a conjunction of disjunctions (for PDNF)

To find the PDNF, we consider each clause as a separate component and expand the expression to cover all possible combinations where the expression can be true:

PDNF: (PQR)(P¬Q¬R)(¬PQ¬R)(¬P¬QR)\text{PDNF: } (P \land Q \land R) \lor (P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land R)

Summary:

  • PCNF (Principal Conjunctive Normal Form):
    (¬PQ)(¬PR)(P¬Q)(P¬R)(\neg P \lor Q) \land (\neg P \lor R) \land (P \lor \neg Q) \land (P \lor \neg R)

  • PDNF (Principal Disjunctive Normal Form):
    (PQR)(P¬Q¬R)(¬PQ¬R)(¬P¬QR)(P \land Q \land R) \lor (P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land R)

Would you like any further details or have any questions?

Here are five related questions:

  1. How do we convert a logical expression into its CNF form?
  2. Can you explain how the distributive property works in logic?
  3. What are the advantages of using CNF and DNF in logic?
  4. How does the implication PQP \rightarrow Q relate to other logical operations?
  5. What is the significance of PCNF and PDNF in boolean algebra and logic simplification?

Tip: When converting logical expressions, remember that implications can always be rewritten using disjunctions, which is crucial for simplifying complex expressions into their CNF or DNF forms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logical Implications
Conjunctive Normal Form (CNF)
Disjunctive Normal Form (DNF)
Distributive Property in Logic

Formulas

-

Theorems

-

Suitable Grade Level

Advanced