Math Problem Statement

For a given matrix A = \( \begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix} \), find all matrices X such that AX = XA.

Solution

The problem asks to find all matrices XX such that AX=XAAX = XA, where A=(1312)A = \begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix}.

This is a commutativity condition, and we need to determine the set of matrices XX that commute with AA.

Solution Outline

Let X=(x11x12x21x22)X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}. We need to solve for the entries x11,x12,x21,x_{11}, x_{12}, x_{21}, and x22x_{22} such that AX=XAAX = XA.

  1. Calculate AXAX: AX=(1312)(x11x12x21x22)=(x11+3x21x12+3x22x11+2x21x12+2x22)AX = \begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} -x_{11} + 3x_{21} & -x_{12} + 3x_{22} \\ x_{11} + 2x_{21} & x_{12} + 2x_{22} \end{pmatrix}

  2. Calculate XAXA: XA=(x11x12x21x22)(1312)=(x11+x123x11+2x12x21+x223x21+2x22)XA = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -x_{11} + x_{12} & 3x_{11} + 2x_{12} \\ -x_{21} + x_{22} & 3x_{21} + 2x_{22} \end{pmatrix}

  3. Set AX=XAAX = XA and equate corresponding elements: From the matrix equality AX=XAAX = XA, we get the following system of equations: x11+3x21=x11+x12-x_{11} + 3x_{21} = -x_{11} + x_{12} [ -x_{12} + 3x_{22

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Commutative Matrices
System of Linear Equations

Formulas

AX = \begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}
XA = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix}

Theorems

Matrix Commutativity

Suitable Grade Level

Undergraduate