Math Problem Statement

apply simple method to find the inverse of matrix [■(3&2@4&-1)].

Solution

To find the inverse of the 2×22 \times 2 matrix [3241]\begin{bmatrix} 3 & 2 \\ 4 & -1 \end{bmatrix}, you can use the simple formula for the inverse of a 2×22 \times 2 matrix.

For a matrix A=[abcd]\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, the inverse A1\mathbf{A}^{-1} is given by:

A1=1det(A)[dbca]\mathbf{A}^{-1} = \frac{1}{\text{det}(\mathbf{A})} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}

where det(A)=adbc\text{det}(\mathbf{A}) = ad - bc is the determinant of A\mathbf{A}.

Steps:

  1. Calculate the determinant: det(A)=(3×1)(2×4)=38=11\text{det}(\mathbf{A}) = (3 \times -1) - (2 \times 4) = -3 - 8 = -11

  2. Apply the formula: A1=111[1243]\mathbf{A}^{-1} = \frac{1}{-11} \cdot \begin{bmatrix} -1 & -2 \\ -4 & 3 \end{bmatrix}

  3. Multiply by the scalar: A1=[111211411311]\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{11} & \frac{2}{11} \\ \frac{4}{11} & -\frac{3}{11} \end{bmatrix}

So, the inverse of the matrix [3241]\begin{bmatrix} 3 & 2 \\ 4 & -1 \end{bmatrix} is:

A1=[111211411311]\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{11} & \frac{2}{11} \\ \frac{4}{11} & -\frac{3}{11} \end{bmatrix}

Would you like details or have any questions about this process?


Here are some related questions you might find interesting:

  1. How do you calculate the determinant of a 3×33 \times 3 matrix?
  2. What are the properties of an invertible matrix?
  3. How can you check if a matrix is singular or non-singular?
  4. What is the role of the determinant in matrix inversion?
  5. How does the inverse of a matrix relate to solving systems of linear equations?

Tip: Always check the determinant before trying to find the inverse of a matrix. If the determinant is zero, the matrix is not invertible!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra

Formulas

Inverse of a 2x2 matrix formula

Theorems

-

Suitable Grade Level

Undergraduate level