Math Problem Statement
Tentukan persamaan hiperbola yang diketahui titik puncak (4, 2) dan (-2, 2) serta salah satu asimtotnya 2x − 3y + 4 = 0!
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Conic Sections
Hyperbolas
Coordinate Geometry
Asymptotes
Formulas
Center of a hyperbola: (h, k) = ((x1 + x2) / 2, (y1 + y2) / 2)
Distance between vertices (2a): 2a = |x1 - x2|
Asymptote of hyperbola with horizontal transverse axis: y - k = ± (b/a)(x - h)
Standard equation of a hyperbola with horizontal transverse axis: (x - h)^2/a^2 - (y - k)^2/b^2 = 1
Theorems
Equation of Hyperbola
Properties of Asymptotes
Suitable Grade Level
Grades 10-12
Related Recommendation
Standard Form of a Hyperbola with Asymptotes y = 4x and y = -4x
Hyperbola Equation with Horizontal Conjugate Axis and Asymptote 4x + 3y = 12
Asymptote Calculation for Hyperbola: \frac{(y+2)^2}{16} - \frac{(x-2)^2}{9} = 1
Hyperbola with Horizontal Conjugate Axis, Auxiliary Rectangle, and Asymptote
Find the Standard Equation of a Hyperbola with Given Asymptotes and Vertex (-1, 7)