Math Problem Statement

Eigen vectors of matrix A=[1 2; 2 3]

Solution

To find the eigenvectors of the matrix A=[1223]A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, we need to follow these steps:

1. Find the Eigenvalues:

The eigenvalues λ\lambda are found by solving the characteristic equation:

det(AλI)=0\det(A - \lambda I) = 0

Where II is the identity matrix:

AλI=[1223]λ[1001]=[1λ223λ]A - \lambda I = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1-\lambda & 2 \\ 2 & 3-\lambda \end{bmatrix}

The determinant of this matrix is:

det(AλI)=(1λ)(3λ)(2)(2)\det(A - \lambda I) = (1-\lambda)(3-\lambda) - (2)(2)

=λ24λ14=λ24λ4= \lambda^2 - 4\lambda - 1 - 4 = \lambda^2 - 4\lambda - 4

Now, solve the characteristic equation:

λ24λ3=0\lambda^2 - 4\lambda - 3 = 0

Use the quadratic formula:

λ=b±b24ac2a\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Where a=1a = 1, b=4b = -4, and c=3c = -3:

λ=4±16+122=4±282=4±272=2±7\lambda = \frac{4 \pm \sqrt{16 + 12}}{2} = \frac{4 \pm \sqrt{28}}{2} = \frac{4 \pm 2\sqrt{7}}{2} = 2 \pm \sqrt{7}

So the eigenvalues are:

λ1=2+7,λ2=27\lambda_1 = 2 + \sqrt{7}, \quad \lambda_2 = 2 - \sqrt{7}

2. Find the Eigenvectors:

For each eigenvalue λ\lambda, solve the equation (AλI)v=0(A - \lambda I)\mathbf{v} = 0 to find the corresponding eigenvector v\mathbf{v}.

For λ1=2+7\lambda_1 = 2 + \sqrt{7}:

(Aλ1I)=[1(2+7)223(2+7)]=[172217](A - \lambda_1 I) = \begin{bmatrix} 1-(2+\sqrt{7}) & 2 \\ 2 & 3-(2+\sqrt{7}) \end{bmatrix} = \begin{bmatrix} -1-\sqrt{7} & 2 \\ 2 & 1-\sqrt{7} \end{bmatrix}

Set up the system (Aλ1I)v=0(A - \lambda_1 I)\mathbf{v} = 0:

[172217][x1x2]=[00]\begin{bmatrix} -1-\sqrt{7} & 2 \\ 2 & 1-\sqrt{7} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

This simplifies to:

(-1-\sqrt{7})x_1 + 2x_2 = 0 \\ 2x_1 + (1-\sqrt{7})x_2 = 0 \end{cases}$$ We can solve for $$x_2$$ in terms of $$x_1$$ from the first equation: $$x_2 = \frac{1+\sqrt{7}}{2} x_1$$ So, the eigenvector corresponding to $$\lambda_1 = 2 + \sqrt{7}$$ is: $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{7}}{2} \end{bmatrix}$$ #### For $$\lambda_2 = 2 - \sqrt{7}$$: $$(A - \lambda_2 I) = \begin{bmatrix} 1-(2-\sqrt{7}) & 2 \\ 2 & 3-(2-\sqrt{7}) \end{bmatrix} = \begin{bmatrix} -1+\sqrt{7} & 2 \\ 2 & 1+\sqrt{7} \end{bmatrix}$$ Set up the system $$(A - \lambda_2 I)\mathbf{v} = 0$$: $$\begin{cases} (-1+\sqrt{7})x_1 + 2x_2 = 0 \\ 2x_1 + (1+\sqrt{7})x_2 = 0 \end{cases}$$ We can solve for $$x_2$$ in terms of $$x_1$$ from the first equation: $$x_2 = \frac{1-\sqrt{7}}{2} x_1$$ So, the eigenvector corresponding to $$\lambda_2 = 2 - \sqrt{7}$$ is: $$\mathbf{v}_2 = \begin{bmatrix} 1 \\ \frac{1-\sqrt{7}}{2} \end{bmatrix}$$ ### Final Answer: The eigenvectors of the matrix \( A = \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Eigenvalues
Eigenvectors
Matrix Algebra

Formulas

Characteristic equation
Quadratic formula

Theorems

-

Suitable Grade Level

Advanced High School