Math Problem Statement
Eigen vectors of matrix A=[1 2; 2 3]
Solution
To find the eigenvectors of the matrix , we need to follow these steps:
1. Find the Eigenvalues:
The eigenvalues are found by solving the characteristic equation:
Where is the identity matrix:
The determinant of this matrix is:
Now, solve the characteristic equation:
Use the quadratic formula:
Where , , and :
So the eigenvalues are:
2. Find the Eigenvectors:
For each eigenvalue , solve the equation to find the corresponding eigenvector .
For :
Set up the system :
This simplifies to:
(-1-\sqrt{7})x_1 + 2x_2 = 0 \\ 2x_1 + (1-\sqrt{7})x_2 = 0 \end{cases}$$ We can solve for $$x_2$$ in terms of $$x_1$$ from the first equation: $$x_2 = \frac{1+\sqrt{7}}{2} x_1$$ So, the eigenvector corresponding to $$\lambda_1 = 2 + \sqrt{7}$$ is: $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{7}}{2} \end{bmatrix}$$ #### For $$\lambda_2 = 2 - \sqrt{7}$$: $$(A - \lambda_2 I) = \begin{bmatrix} 1-(2-\sqrt{7}) & 2 \\ 2 & 3-(2-\sqrt{7}) \end{bmatrix} = \begin{bmatrix} -1+\sqrt{7} & 2 \\ 2 & 1+\sqrt{7} \end{bmatrix}$$ Set up the system $$(A - \lambda_2 I)\mathbf{v} = 0$$: $$\begin{cases} (-1+\sqrt{7})x_1 + 2x_2 = 0 \\ 2x_1 + (1+\sqrt{7})x_2 = 0 \end{cases}$$ We can solve for $$x_2$$ in terms of $$x_1$$ from the first equation: $$x_2 = \frac{1-\sqrt{7}}{2} x_1$$ So, the eigenvector corresponding to $$\lambda_2 = 2 - \sqrt{7}$$ is: $$\mathbf{v}_2 = \begin{bmatrix} 1 \\ \frac{1-\sqrt{7}}{2} \end{bmatrix}$$ ### Final Answer: The eigenvectors of the matrix \( A = \Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Eigenvalues
Eigenvectors
Matrix Algebra
Formulas
Characteristic equation
Quadratic formula
Theorems
-
Suitable Grade Level
Advanced High School
Related Recommendation
Find Eigenvalues and Eigenvectors of Matrix A = [1 3 3; 1 4 3; -1 3 4]
Find Eigenvalues and Eigenvectors of Matrix [2 3; 3 2]
Eigenvalues and Eigenvectors of a 3x3 Matrix: A = [1, 0, -1; 1, 2, 1; 2, 2, 3]
Eigenvalues and Eigenvectors of 3x3 Matrix 3 2 4; 2 0 2; 4 2 3
Eigenvalues and Eigenvectors of Matrix A = 2 -2 2 1 1 1 1 3 -1