Math Problem Statement

x= 2(theta + sin theta) , y=3(1-costheta ) find dy/dx

Solution

To find dydx\frac{dy}{dx}, we'll first find dxdθ\frac{dx}{d\theta} and dydθ\frac{dy}{d\theta} and then use the chain rule:

dydx=dydθdxdθ\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}

Given:

x=2(θ+sinθ)x = 2(\theta + \sin\theta) y=3(1cosθ)y = 3(1 - \cos\theta)


Step 1: Find dxdθ\frac{dx}{d\theta}

x=2(θ+sinθ)x = 2(\theta + \sin\theta) Differentiate with respect to θ\theta: dxdθ=2(1+cosθ)\frac{dx}{d\theta} = 2\left(1 + \cos\theta\right)


Step 2: Find dydθ\frac{dy}{d\theta}

y=3(1cosθ)y = 3(1 - \cos\theta) Differentiate with respect to θ\theta: dydθ=3(0(sinθ))=3sinθ\frac{dy}{d\theta} = 3(0 - (-\sin\theta)) = 3\sin\theta


Step 3: Find dydx\frac{dy}{dx}

Using the chain rule: dydx=dydθdxdθ\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} Substitute the results: dydx=3sinθ2(1+cosθ)\frac{dy}{dx} = \frac{3\sin\theta}{2(1 + \cos\theta)}

Thus, the result is: dydx=3sinθ2(1+cosθ)\frac{dy}{dx} = \frac{3\sin\theta}{2(1 + \cos\theta)}


Do you want me to expand this further or solve for specific values of θ\theta? Let me know!

5 Related Questions:

  1. What is the geometrical interpretation of dydx\frac{dy}{dx} in this context?
  2. How does dydx\frac{dy}{dx} behave as θ0\theta \to 0?
  3. What are the critical points of this parametric curve?
  4. Can this parametric equation be converted into a Cartesian equation?
  5. What happens to dydx\frac{dy}{dx} if θ=π\theta = \pi?

Tip:

Always check whether dxdθ\frac{dx}{d\theta} is non-zero before using the chain rule to avoid division by zero

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Differentiation
Chain Rule

Formulas

dx/dθ = 2(1 + cosθ)
dy/dθ = 3sinθ
dy/dx = (dy/dθ) / (dx/dθ)

Theorems

Chain Rule

Suitable Grade Level

Grades 11-12 or introductory college calculus