Math Problem Statement

answer

Find dy/dx when x = cosec^{-1}((1 + t^2) / (2t)) and y = tan^{-1}((3t - t^3) / (1 - 3t^2)).

Solution

We are given two equations for xx and yy in terms of a parameter tt:

x=csc1(1+t22t)x = \csc^{-1}\left(\frac{1 + t^2}{2t}\right) and y=tan1(3tt313t2).y = \tan^{-1}\left(\frac{3t - t^3}{1 - 3t^2}\right).

We need to find dydx\frac{dy}{dx}. This involves using the chain rule, i.e.,

dydx=dydtdtdx.\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}.

Step 1: Differentiate xx with respect to tt

We are given: x=csc1(1+t22t).x = \csc^{-1}\left(\frac{1 + t^2}{2t}\right).

The derivative of csc1(u)\csc^{-1}(u) with respect to tt is:

ddtcsc1(u)=1uu21dudt.\frac{d}{dt} \csc^{-1}(u) = -\frac{1}{|u|\sqrt{u^2 - 1}} \cdot \frac{du}{dt}.

Here, u=1+t22tu = \frac{1 + t^2}{2t}, so we first need to find dudt\frac{du}{dt}:

u=1+t22t.u = \frac{1 + t^2}{2t}. Using the quotient rule:

dudt=(2t)(2t)(1+t2)(2)(2t)2=4t222t24t2=2t224t2=11/t22.\frac{du}{dt} = \frac{(2t)(2t) - (1 + t^2)(2)}{(2t)^2} = \frac{4t^2 - 2 - 2t^2}{4t^2} = \frac{2t^2 - 2}{4t^2} = \frac{1 - 1/t^2}{2}.

Thus,

[ \frac{dx}{dt} = -\frac{1}{\

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inverse Trigonometric Functions
Differentiation
Chain Rule

Formulas

dy/dx = (dy/dt) * (dt/dx)
d/dt [cosec^{-1}(u)] = -1 / (|u| sqrt(u^2 - 1)) * (du/dt)
d/dt [tan^{-1}(u)] = 1 / (1 + u^2) * (du/dt)

Theorems

Chain Rule of Differentiation
Quotient Rule

Suitable Grade Level

Undergraduate Calculus or Advanced High School