Math Problem Statement

Determine the derivative dy/dx if y = tan^(-1)((x^2 + 1) / (1 - x^2)). Simplify the expression of the derivative.

Solution

To determine the derivative dydx\frac{dy}{dx} for y=tan1(x2+11x2)y = \tan^{-1} \left( \frac{x^2 + 1}{1 - x^2} \right), let us solve this step-by-step.


Step 1: Recall the derivative formula for tan1(u)\tan^{-1}(u)

The derivative of tan1(u)\tan^{-1}(u) with respect to xx is: ddxtan1(u)=11+u2dudx.\frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx}.

Here, u=x2+11x2u = \frac{x^2 + 1}{1 - x^2}.


Step 2: Differentiate uu

We need the derivative of: u=x2+11x2.u = \frac{x^2 + 1}{1 - x^2}.

Using the quotient rule: dudx=(1x2)(2x)(x2+1)(2x)(1x2)2.\frac{du}{dx} = \frac{(1 - x^2)(2x) - (x^2 + 1)(-2x)}{(1 - x^2)^2}.

Simplify the numerator: (1x2)(2x)(x2+1)(2x)=2x2x3+2x3+2x=4x.(1 - x^2)(2x) - (x^2 + 1)(-2x) = 2x - 2x^3 + 2x^3 + 2x = 4x.

Thus: dudx=4x(1x2)2.\frac{du}{dx} = \frac{4x}{(1 - x^2)^2}.


Step 3: Plug uu and dudx\frac{du}{dx} into the formula

Now substitute u=x2+11x2u = \frac{x^2 + 1}{1 - x^2} and dudx=4x(1x2)2\frac{du}{dx} = \frac{4x}{(1 - x^2)^2} into the derivative formula for tan1(u)\tan^{-1}(u): dydx=11+(x2+11x2)24x(1x2)2.\frac{dy}{dx} = \frac{1}{1 + \left( \frac{x^2 + 1}{1 - x^2} \right)^2} \cdot \frac{4x}{(1 - x^2)^2}.


Step 4: Simplify the expression

Simplify 1+(x2+11x2)21 + \left( \frac{x^2 + 1}{1 - x^2} \right)^2: (x2+11x2)2=(x2+1)2(1x2)2.\left( \frac{x^2 + 1}{1 - x^2} \right)^2 = \frac{(x^2 + 1)^2}{(1 - x^2)^2}.

So: 1+(x2+11x2)2=(1x2)2+(x2+1)2(1x2)2.1 + \left( \frac{x^2 + 1}{1 - x^2} \right)^2 = \frac{(1 - x^2)^2 + (x^2 + 1)^2}{(1 - x^2)^2}.

Expand both terms in the numerator: (1x2)2=12x2+x4,(1 - x^2)^2 = 1 - 2x^2 + x^4, (x2+1)2=x4+2x2+1.(x^2 + 1)^2 = x^4 + 2x^2 + 1.

Adding them: (1x2)2+(x2+1)2=(12x2+x4)+(x4+2x2+1)=2x4+2.(1 - x^2)^2 + (x^2 + 1)^2 = (1 - 2x^2 + x^4) + (x^4 + 2x^2 + 1) = 2x^4 + 2.

Thus: 1+(x2+11x2)2=2x4+2(1x2)2.1 + \left( \frac{x^2 + 1}{1 - x^2} \right)^2 = \frac{2x^4 + 2}{(1 - x^2)^2}.


Step 5: Final expression

Substitute back into dydx\frac{dy}{dx}: dydx=12x4+2(1x2)24x(1x2)2.\frac{dy}{dx} = \frac{1}{\frac{2x^4 + 2}{(1 - x^2)^2}} \cdot \frac{4x}{(1 - x^2)^2}.

Simplify: dydx=(1x2)22x4+24x(1x2)2.\frac{dy}{dx} = \frac{(1 - x^2)^2}{2x^4 + 2} \cdot \frac{4x}{(1 - x^2)^2}.

Cancel (1x2)2(1 - x^2)^2: dydx=4x2x4+2.\frac{dy}{dx} = \frac{4x}{2x^4 + 2}.

Factor 22 from the denominator: dydx=4x2(x4+1)=2xx4+1.\frac{dy}{dx} = \frac{4x}{2(x^4 + 1)} = \frac{2x}{x^4 + 1}.


Final Answer:

dydx=2xx4+1.\frac{dy}{dx} = \frac{2x}{x^4 + 1}.

Let me know if you want additional explanations or have any questions!


Here are 5 related questions for practice:

  1. What is the derivative of y=tan1(x2)y = \tan^{-1}(x^2)?
  2. Find the derivative of y=tan1(1x)y = \tan^{-1}\left(\frac{1}{x}\right).
  3. How would you differentiate y=cot1(x)y = \cot^{-1}(x)?
  4. What is the second derivative of y=tan1(x)y = \tan^{-1}(x)?
  5. Evaluate the derivative of y=tan1(ex)y = \tan^{-1}(e^x) at x=0x = 0.

Tip: When differentiating inverse trigonometric functions, always identify the argument (u) and apply the chain rule carefully!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Inverse Trigonometric Functions
Simplification
Quotient Rule

Formulas

Derivative of tan^(-1)(u): d/dx[tan^(-1)(u)] = 1 / (1 + u^2) * du/dx
Quotient Rule: d/dx[f(x)/g(x)] = [g(x)f'(x) - f(x)g'(x)] / (g(x))^2

Theorems

Properties of inverse trigonometric functions
Chain Rule
Quotient Rule

Suitable Grade Level

Undergraduate Calculus (or Advanced High School Calculus)