Math Problem Statement

x3(x + y) = y2(4x − y) Find dy/dx by implicit differentiation

Solution

To find dydx\frac{dy}{dx} using implicit differentiation, let's start with the equation:

x3(x+y)=y2(4xy)x^3(x + y) = y^2(4x - y)

Step 1: Differentiate both sides with respect to xx

Using the product rule, differentiate each side:

Left Side

ddx(x3(x+y))=x3ddx(x+y)+(x+y)ddx(x3)\frac{d}{dx} \left( x^3(x + y) \right) = x^3 \cdot \frac{d}{dx}(x + y) + (x + y) \cdot \frac{d}{dx}(x^3) The derivatives are: =x3(1+dydx)+(x+y)3x2= x^3(1 + \frac{dy}{dx}) + (x + y) \cdot 3x^2 Expanding: =x3+x3dydx+3x2(x+y)= x^3 + x^3 \frac{dy}{dx} + 3x^2(x + y)

Right Side

ddx(y2(4xy))=y2ddx(4xy)+(4xy)ddx(y2)\frac{d}{dx} \left( y^2(4x - y) \right) = y^2 \cdot \frac{d}{dx}(4x - y) + (4x - y) \cdot \frac{d}{dx}(y^2) The derivatives are: =y2(4dydx)+(4xy)2ydydx= y^2(4 - \frac{dy}{dx}) + (4x - y) \cdot 2y \frac{dy}{dx} Expanding: =4y2y2dydx+8xydydx2y2dydx= 4y^2 - y^2 \frac{dy}{dx} + 8xy \frac{dy}{dx} - 2y^2 \frac{dy}{dx}

Step 2: Combine Terms

Now, we have:

x3+x3dydx+3x3+3x2y=4y2y2dydx+8xydydx2y2dydxx^3 + x^3 \frac{dy}{dx} + 3x^3 + 3x^2y = 4y^2 - y^2 \frac{dy}{dx} + 8xy \frac{dy}{dx} - 2y^2 \frac{dy}{dx}

Step 3: Solve for dydx\frac{dy}{dx}

Combine

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Implicit Differentiation
Product Rule
Differentiation

Formulas

Product rule: d(uv)/dx = u(dv/dx) + v(du/dx)
Implicit differentiation: dy/dx for y as a function of x

Theorems

Product Rule in Differentiation

Suitable Grade Level

Grades 11-12