Math Problem Statement

If x = 5 + Sec(3θ) and y = 1 - Tan(3θ), then find d²y/dx² at θ = π/4.

Solution

The problem from the image reads:

Problem (10): Given: x=5+sec3θx = 5 + \sec 3\theta and y=1tan3θ,y = 1 - \tan 3\theta, find d2ydx2\frac{d^2y}{dx^2} at θ=π4\theta = \frac{\pi}{4}.


Solution:

We will follow these steps to solve the problem:

1. Find the first derivative, dydx\frac{dy}{dx}:

Using the chain rule, we first find dydθ\frac{dy}{d\theta} and dxdθ\frac{dx}{d\theta} and then divide them.

dxdθ\frac{dx}{d\theta}:

x=5+sec3θdxdθ=3sec3θtan3θ.x = 5 + \sec 3\theta \Rightarrow \frac{dx}{d\theta} = 3\sec 3\theta \tan 3\theta.

dydθ\frac{dy}{d\theta}:

y=1tan3θdydθ=3sec23θ.y = 1 - \tan 3\theta \Rightarrow \frac{dy}{d\theta} = -3\sec^2 3\theta.

Thus, the first derivative dydx\frac{dy}{dx} is: dydx=dydθdxdθ=3sec23θ3sec3θtan3θ=sec3θtan3θ=cot3θ.\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-3\sec^2 3\theta}{3\sec 3\theta \tan 3\theta} = \frac{-\sec 3\theta}{\tan 3\theta} = -\cot 3\theta.

2. Find the second derivative, d2ydx2\frac{d^2y}{dx^2}:

To find d2ydx2\frac{d^2y}{dx^2}, we need to differentiate dydx\frac{dy}{dx} with respect to θ\theta, and then divide by dxdθ\frac{dx}{d\theta}.

Differentiate dydx=cot3θ\frac{dy}{dx} = -\cot 3\theta:

ddθ(cot3θ)=3csc23θ.\frac{d}{d\theta}(-\cot 3\theta) = 3\csc^2 3\theta.

Now, divide by dxdθ=3sec3θtan3θ\frac{dx}{d\theta} = 3\sec 3\theta \tan 3\theta: d2ydx2=3csc23θ3sec3θtan3θ=csc23θsec3θtan3θ.\frac{d^2y}{dx^2} = \frac{3\csc^2 3\theta}{3\sec 3\theta \tan 3\theta} = \frac{\csc^2 3\theta}{\sec 3\theta \tan 3\theta}.

3. Evaluate at θ=π4\theta = \frac{\pi}{4}:

At θ=π4\theta = \frac{\pi}{4}, we have: 3θ=3π4,sec(3π4)=2,tan(3π4)=1,csc2(3π4)=2.3\theta = \frac{3\pi}{4}, \quad \sec\left(\frac{3\pi}{4}\right) = -\sqrt{2}, \quad \tan\left(\frac{3\pi}{4}\right) = -1, \quad \csc^2\left(\frac{3\pi}{4}\right) = 2.

Thus, at θ=π4\theta = \frac{\pi}{4}: d2ydx2=2(2)(1)=22=2.\frac{d^2y}{dx^2} = \frac{2}{(-\sqrt{2})(-1)} = \frac{2}{\sqrt{2}} = \sqrt{2}.


Final Answer:

d2ydx2 at θ=π4=2.\frac{d^2y}{dx^2} \text{ at } \theta = \frac{\pi}{4} = \sqrt{2}.


Would you like further details or have any other questions?

Here are some related questions to explore further:

  1. What is the geometric meaning of the second derivative d2ydx2\frac{d^2y}{dx^2}?
  2. How does the chain rule apply when functions are dependent on a third variable?
  3. What are the trigonometric identities for sec\sec, csc\csc, and cot\cot at different angles?
  4. What is the significance of evaluating derivatives at specific points like θ=π4\theta = \frac{\pi}{4}?
  5. How does dydx\frac{dy}{dx} represent the rate of change in parametric equations?

Tip: When differentiating trigonometric functions, always double-check the identities and signs of the functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Trigonometry
Parametric Equations
Chain Rule

Formulas

dx/dθ = 3 * Sec(3θ) * Tan(3θ)
dy/dθ = -3 * Sec²(3θ)
dy/dx = -Cot(3θ)
d²y/dx² = (d/dθ(Cot(3θ)) / (dx/dθ))

Theorems

Chain Rule
Trigonometric Identities

Suitable Grade Level

Grades 11-12