Math Problem Statement

sin θ = y/x, cos θ = ?

Solution

The question presents the value of sinθ=yx\sin \theta = \frac{y}{x} and asks for the value of cosθ\cos \theta. This is based on a standard trigonometric identity.

Using the Pythagorean identity:

sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

Substitute sinθ=yx\sin \theta = \frac{y}{x} into the identity:

(yx)2+cos2θ=1\left(\frac{y}{x}\right)^2 + \cos^2 \theta = 1

y2x2+cos2θ=1\frac{y^2}{x^2} + \cos^2 \theta = 1

Now, solve for cos2θ\cos^2 \theta:

cos2θ=1y2x2\cos^2 \theta = 1 - \frac{y^2}{x^2}

cos2θ=x2y2x2\cos^2 \theta = \frac{x^2 - y^2}{x^2}

Taking the square root of both sides:

cosθ=±x2y2x\cos \theta = \pm \frac{\sqrt{x^2 - y^2}}{x}

Now let's check the options:

  • Option (A): x2y2x\frac{\sqrt{x^2 - y^2}}{x}
  • Option (B): yx2y2\frac{y}{\sqrt{x^2 - y^2}}
  • Option (C): xx2y2\frac{x}{\sqrt{x^2 - y^2}}
  • Option (D): x2y2y\frac{\sqrt{x^2 - y^2}}{y}

The correct answer is Option (A): x2y2x\frac{\sqrt{x^2 - y^2}}{x}.

Do you need further clarification or details on this?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Pythagorean Identity

Formulas

sin^2 θ + cos^2 θ = 1
cos^2 θ = 1 - sin^2 θ

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 9-11