Math Problem Statement

Find the correlation coefficient r of the data below. Round your answer to the nearest hundredth. | x | y | |------|-----| | 1.5 | -5.4 | | -1.8 | 5.5 | | -2.5 | 4 | | -2.1 | 1 | | -13.2 | -6.5 | | 2.4 | -4.9 |

Solution

To find the correlation coefficient rr for the given data, we use the formula:

r=nxyxy(nx2(x)2)(ny2(y)2)r = \frac{n \sum xy - \sum x \sum y}{\sqrt{\left(n \sum x^2 - (\sum x)^2\right)\left(n \sum y^2 - (\sum y)^2\right)}}

Where:

  • nn is the number of data points
  • xx and yy are the values from the table
  • x\sum x, y\sum y, xy\sum xy, x2\sum x^2, and y2\sum y^2 are the sums needed for the formula.

Step 1: Organize the data

Let’s calculate each necessary term:

xxyyxyxyx2x^2y2y^2
1.5-5.4-8.12.2529.16
-1.85.5-9.93.2430.25
-2.54-106.2516
-2.11-2.14.411
-13.2-6.585.8174.2442.25
2.4-4.9-11.765.7624.01

Step 2: Calculate the sums

Now add up all the columns:

x=1.5+(1.8)+(2.5)+(2.1)+(13.2)+2.4=15.7\sum x = 1.5 + (-1.8) + (-2.5) + (-2.1) + (-13.2) + 2.4 = -15.7

y=5.4+5.5+4+1+(6.5)+(4.9)=6.3\sum y = -5.4 + 5.5 + 4 + 1 + (-6.5) + (-4.9) = -6.3

xy=8.1+(9.9)+(10)+(2.1)+85.8+(11.76)=43.94\sum xy = -8.1 + (-9.9) + (-10) + (-2.1) + 85.8 + (-11.76) = 43.94

x2=2.25+3.24+6.25+4.41+174.24+5.76=196.15\sum x^2 = 2.25 + 3.24 + 6.25 + 4.41 + 174.24 + 5.76 = 196.15

y2=29.16+30.25+16+1+42.25+24.01=142.67\sum y^2 = 29.16 + 30.25 + 16 + 1 + 42.25 + 24.01 = 142.67

The number of data points n=6n = 6.


Step 3: Substitute into the formula

r=nxyxy(nx2(x)2)(ny2(y)2)r = \frac{n \sum xy - \sum x \sum y}{\sqrt{\left(n \sum x^2 - (\sum x)^2\right)\left(n \sum y^2 - (\sum y)^2\right)}}

Substitute the known values:

  • n=6n = 6
  • xy=43.94\sum xy = 43.94
  • x=15.7\sum x = -15.7
  • y=6.3\sum y = -6.3
  • x2=196.15\sum x^2 = 196.15
  • y2=142.67\sum y^2 = 142.67

r=6(43.94)(15.7)(6.3)(6(196.15)(15.7)2)(6(142.67)(6.3)2)r = \frac{6(43.94) - (-15.7)(-6.3)}{\sqrt{\left(6(196.15) - (-15.7)^2\right)\left(6(142.67) - (-6.3)^2\right)}}

  1. Calculate each term:

    • 6(43.94)=263.646(43.94) = 263.64
    • (15.7)(6.3)=98.91(-15.7)(-6.3) = 98.91
    • 6(196.15)=1176.96(196.15) = 1176.9
    • (15.7)2=246.49(-15.7)^2 = 246.49
    • 6(142.67)=856.026(142.67) = 856.02
    • (6.3)2=39.69(-6.3)^2 = 39.69
  2. Substitute back:

r=263.6498.91(1176.9246.49)(856.0239.69)r = \frac{263.64 - 98.91}{\sqrt{\left(1176.9 - 246.49\right)\left(856.02 - 39.69\right)}}

Simplify the terms:

  • 263.6498.91=164.73263.64 - 98.91 = 164.73
  • 1176.9246.49=930.411176.9 - 246.49 = 930.41
  • 856.0239.69=816.33856.02 - 39.69 = 816.33

r=164.73930.41816.33r = \frac{164.73}{\sqrt{930.41 \cdot 816.33}}

  1. Multiply and take the square root:
  • 930.41816.33=759876.5930.41 \cdot 816.33 = 759876.5
  • 759876.5871.68\sqrt{759876.5} \approx 871.68
  1. Final division:

r=164.73871.680.19r = \frac{164.73}{871.68} \approx 0.19


Final Answer:

The correlation coefficient rr is approximately 0.19.


Do you want further clarification or breakdown of any steps?


Related Questions:

  1. What does the value of r=0.19r = 0.19 indicate about the relationship between xx and yy?
  2. How do you interpret a weak positive correlation in real-world data?
  3. Can you explain the process for calculating rr in a spreadsheet (e.g., Excel or Google Sheets)?
  4. What are the properties and limitations of the correlation coefficient rr?
  5. How would the correlation coefficient change if one outlier was removed from the data set?

Tip:

To check your work efficiently, use a graphing calculator, spreadsheet software, or statistical tools like Python or R. These tools can calculate rr automatically!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Correlation Coefficient
Linear Correlation

Formulas

r = (nΣxy - ΣxΣy) / sqrt[(nΣx^2 - (Σx)^2)(nΣy^2 - (Σy)^2)]

Theorems

Pearson Correlation Coefficient

Suitable Grade Level

Grades 10-12