Math Problem Statement

Given directed line segment CD, if point E divides CD three-fourths of the way from C to D, find the coordinates of E, then plot E.

Solution

To find the coordinates of point EE, which divides the directed line segment CDCD three-fourths of the way from CC to DD, we can use the section formula. The section formula states:

\text{If a point P(x, y)dividesthelinesegmentjoiningdivides the line segment joiningA(x_1, y_1)andandB(x_2, y_2)intheratioin the ratiom:n,thenthecoordinatesof, then the coordinates of P are given by:}

P(x,y)=(mx2+nx1m+n,my2+ny1m+n)P(x, y) = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right)

Step 1: Set Up the Problem

Let's denote the coordinates of points CC and DD as: C(x1,y1)andD(x2,y2)C(x_1, y_1) \quad \text{and} \quad D(x_2, y_2)

Since point EE divides the line segment CDCD three-fourths of the way from CC to DD, the ratio m:nm:n is 3:13:1.

Step 2: Calculate the Coordinates of EE

Using the section formula: E(x,y)=(3x2+1x13+1,3y2+1y13+1)E(x, y) = \left( \frac{3x_2 + 1x_1}{3+1}, \frac{3y_2 + 1y_1}{3+1} \right) E(x,y)=(3x2+x14,3y2+y14)E(x, y) = \left( \frac{3x_2 + x_1}{4}, \frac{3y_2 + y_1}{4} \right)

Step 3: Plug in Coordinates of CC and DD

Let’s assume the coordinates of CC are (x1,y1)(x_1, y_1) and DD are (x2,y2)(x_2, y_2).

E(x,y)=(3(x2)+(x1)4,3(y2)+(y1)4)E(x, y) = \left( \frac{3(x_2) + (x_1)}{4}, \frac{3(y_2) + (y_1)}{4} \right)

Step 4: Example Calculation

If CC has coordinates (1,2)(1, 2) and DD has coordinates (5,10)(5, 10):

E(x,y)=(3(5)+14,3(10)+24)E(x, y) = \left( \frac{3(5) + 1}{4}, \frac{3(10) + 2}{4} \right)

E(x,y)=(15+14,30+24)E(x, y) = \left( \frac{15 + 1}{4}, \frac{30 + 2}{4} \right)

E(x,y)=(164,324)E(x, y) = \left( \frac{16}{4}, \frac{32}{4} \right)

E(x,y)=(4,8)E(x, y) = (4, 8)

Step 5: Plot the Point EE

I'll now plot the point E(4,8)E(4, 8) on a coordinate plane.

Let's proceed to plot this.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Section Formula

Formulas

Section formula for dividing a line segment

Theorems

-

Suitable Grade Level

High School