Math Problem Statement
Solution
The image asks to determine the ratio of the given geometric sequence:
To find the common ratio in a geometric sequence, we divide a term by its preceding term. Taking the second and first terms:
Thus, the common ratio of the geometric sequence is .
Would you like further details on geometric sequences or have any other questions?
Here are five related questions to deepen your understanding:
- How do you find the nth term of a geometric sequence?
- What is the sum of an infinite geometric series if ?
- How do you differentiate between geometric and arithmetic sequences?
- Can a geometric sequence have a negative common ratio?
- What is the formula for the sum of the first n terms of a geometric series?
Tip: In any geometric progression, multiplying any term by the ratio gives the next term.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometric Sequences
Ratios
Formulas
r = a(n) / a(n-1)
Theorems
Geometric Sequence Ratio Theorem
Suitable Grade Level
Grades 8-10
Related Recommendation
Find the 8th Term of a Geometric Sequence: 1/8, 1/4, 1/2
How to Find the Common Ratio in a Geometric Sequence: 1, 1/2, 1/4, 1/8, 1/16
Geometric Progression: Finding the Common Ratio for 1/16, 1/8, 1/4
Find the 10th Term of Geometric Sequence 8, 4, 2, 1, ...
Find the Common Ratio in a Geometric Sequence with Multiple Choices