Math Problem Statement

If m∠A = (8/3x - 5)°, m∠B = (2x + 25)°, and m∠C = 2(x + 5/2)°, find m∠B.

Solution

We are given the measures of the angles of triangle ABCABC in terms of xx:

  • mA=(83x5)m\angle A = \left( \frac{8}{3}x - 5 \right)^\circ,
  • mB=(2x+25)m\angle B = (2x + 25)^\circ,
  • mC=2(x+52)m\angle C = 2\left( x + \frac{5}{2} \right)^\circ.

The sum of the angles in a triangle is always 180180^\circ. Therefore:

mA+mB+mC=180.m\angle A + m\angle B + m\angle C = 180^\circ.

Step 1: Substitute the given expressions

(83x5)+(2x+25)+2(x+52)=180.\left( \frac{8}{3}x - 5 \right) + (2x + 25) + 2\left( x + \frac{5}{2} \right) = 180.

Step 2: Simplify each term

  • (83x5)\left( \frac{8}{3}x - 5 \right) remains as is.
  • 2(x+52)=2x+52(x + \frac{5}{2}) = 2x + 5.

Substituting into the equation:

83x5+2x+25+2x+5=180.\frac{8}{3}x - 5 + 2x + 25 + 2x + 5 = 180.

Step 3: Combine like terms

Combine all the xx-terms and constants:

  • 83x+2x+2x=83x+63x+63x=203x\frac{8}{3}x + 2x + 2x = \frac{8}{3}x + \frac{6}{3}x + \frac{6}{3}x = \frac{20}{3}x,
  • 5+25+5=25-5 + 25 + 5 = 25.

So the equation becomes:

203x+25=180.\frac{20}{3}x + 25 = 180.

Step 4: Solve for xx

First, subtract 25 from both sides:

203x=155.\frac{20}{3}x = 155.

Multiply through by 3 to eliminate the fraction:

20x=465.20x = 465.

Divide by 20:

x=46520=23.25.x = \frac{465}{20} = 23.25.

Step 5: Find mBm\angle B

Substitute x=23.25x = 23.25 into mB=2x+25m\angle B = 2x + 25:

mB=2(23.25)+25.m\angle B = 2(23.25) + 25.

Simplify:

mB=46.5+25=71.5.m\angle B = 46.5 + 25 = 71.5.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Angle Sum Property of a Triangle
Algebraic Expressions
Solving Linear Equations

Formulas

Sum of angles in a triangle = 180°

Theorems

Angle Sum Theorem

Suitable Grade Level

Grade 9-10