Math Problem Statement
Suku ke 9 dari barisan geometri 256, 384, 576… adalah
Solution
Barisan geometri yang diberikan adalah 256, 384, 576, ...
Untuk menyelesaikan ini, kita harus menentukan suku ke-9 dari barisan tersebut. Dalam barisan geometri, rumus untuk suku ke-n (disebut ) adalah:
Di mana:
- adalah suku pertama,
- adalah rasio (perbandingan) antar suku, dan
- adalah nomor suku yang ingin dicari.
Langkah 1: Tentukan suku pertama dan rasio .
- Suku pertama ,
- Untuk menghitung rasio, kita bagi suku kedua dengan suku pertama:
Langkah 2: Gunakan rumus suku ke-n.
Kita ingin mencari suku ke-9, jadi . Gunakan rumus:
Sekarang kita hitung hasilnya.
Suku ke-9 dari barisan geometri tersebut adalah 6561.
Apakah Anda ingin penjelasan lebih lanjut atau ada pertanyaan lainnya? Berikut adalah beberapa pertanyaan terkait untuk memperdalam pemahaman Anda:
- Bagaimana menghitung suku ke-12 dari barisan yang sama?
- Apa yang terjadi jika rasio berubah menjadi 2?
- Bagaimana cara menentukan jumlah 9 suku pertama dari barisan geometri ini?
- Jika suku ke-9 adalah 6561, bagaimana cara menemukan suku ke-8 tanpa menghitung ulang semua suku?
- Bagaimana konsep barisan geometri ini berbeda dari barisan aritmetika?
Tip: Dalam barisan geometri, setiap suku dibentuk dengan mengalikan suku sebelumnya dengan rasio tetap.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometric Sequence
Exponential Growth
Formulas
U_n = U_1 * r^(n-1)
Theorems
Geometric Sequence Formula
Suitable Grade Level
Grades 9-10
Related Recommendation
Find the Common Ratio in a Geometric Progression with Given Terms
Geometric Progression: Finding the 6th Term in the Sequence 256, 64, 16, 4
Finding the 11th Term of a Geometric Sequence 2, 6, 18, 54
Solving Geometric Sequences: Finding First Term, Common Ratio, and Sum from Term 5 to 15
Find the 7th Term of a Geometric Sequence: 9, 3, 1