Math Problem Statement

Factorize the expressions provided in the uploaded image. Questions include fully factorizing by removing the highest common factor, differences of squares, grouping in pairs, and trinomials.

Solution

Let me analyze the problems in the image and solve them step by step. I'll address each question comprehensively.


3. Fully Factorized Form by Removing the HCF

a) 4a+12b4a + 12b

  • HCF=4HCF = 4
  • 4a+12b=4(a+3b)4a + 12b = 4(a + 3b)

b) 6x9x26x - 9x^2

  • HCF=3xHCF = 3x
  • 6x9x2=3x(23x)6x - 9x^2 = 3x(2 - 3x)

c) 5x2y10xy-5x^2y - 10xy

  • HCF=5xyHCF = -5xy
  • 5x2y10xy=5xy(x+2)-5x^2y - 10xy = -5xy(x + 2)

d) 3(x7)+x(x7)3(x - 7) + x(x - 7)

  • Common factor:(x7)Common\ factor: (x - 7)
  • 3(x7)+x(x7)=(x7)(3+x)3(x - 7) + x(x - 7) = (x - 7)(3 + x)

e) x(2x+1)(2x+1)x(2x + 1) - (2x + 1)

  • Common factor:(2x+1)Common\ factor: (2x + 1)
  • x(2x+1)(2x+1)=(2x+1)(x1)x(2x + 1) - (2x + 1) = (2x + 1)(x - 1)

f) (x2)24(x2)(x - 2)^2 - 4(x - 2)

  • Common factor:(x2)Common\ factor: (x - 2)
  • (x2)24(x2)=(x2)[(x2)4]=(x2)(x6)(x - 2)^2 - 4(x - 2) = (x - 2)[(x - 2) - 4] = (x - 2)(x - 6)

4. Difference of Two Squares

a) x2100x^2 - 100

  • x2100=(x10)(x+10)x^2 - 100 = (x - 10)(x + 10)

b) 3x2483x^2 - 48

  • Factor out 3Factor\ out\ 3: 3(x216)3(x^2 - 16)
  • x216=(x4)(x+4)x^2 - 16 = (x - 4)(x + 4)
  • Final: 3(x4)(x+4)3(x - 4)(x + 4)

c) 25x2y225x^2 - y^2

  • 25x2y2=(5xy)(5x+y)25x^2 - y^2 = (5x - y)(5x + y)

d) 499x249 - 9x^2

  • 499x2=(73x)(7+3x)49 - 9x^2 = (7 - 3x)(7 + 3x)

e) (x3)281(x - 3)^2 - 81

  • (x3)281=[(x3)9][(x3)+9](x - 3)^2 - 81 = [(x - 3) - 9][(x - 3) + 9]
  • Final: (x12)(x+6)(x - 12)(x + 6)

f) 1x21 - x^2

  • 1x2=(1x)(1+x)1 - x^2 = (1 - x)(1 + x)

5. Factorize by Grouping in Pairs

a) x23x+6x18x^2 - 3x + 6x - 18

  • Group as (x23x)+(6x18)(x^2 - 3x) + (6x - 18)
  • x(x3)+6(x3)x(x - 3) + 6(x - 3)
  • Final: (x+6)(x3)(x + 6)(x - 3)

b) 4x2+10x2x54x^2 + 10x - 2x - 5

  • Group as (4x2+10x)(2x+5)(4x^2 + 10x) - (2x + 5)
  • 2x(2x+5)1(2x+5)2x(2x + 5) - 1(2x + 5)
  • Final: (2x1)(2x+5)(2x - 1)(2x + 5)

c) 3x8b+2bx123x - 8b + 2bx - 12

  • Group as (3x8b)+(2bx12)(3x - 8b) + (2bx - 12)
  • x(38b)+2b(x6)x(3 - 8b) + 2b(x - 6)
  • Cannot group further meaningfully here.

6. Factorize Trinomials

a) x2+8x+15x^2 + 8x + 15

  • Factors of 15: 3, 5Factors\ of\ 15:\ 3,\ 5
  • Final: (x+3)(x+5)(x + 3)(x + 5)

b) x23x18x^2 - 3x - 18

  • Factors of 18: 6, 3Factors\ of\ -18:\ -6,\ 3
  • Final: (x6)(x+3)(x - 6)(x + 3)

c) x27x+6x^2 - 7x + 6

  • Factors of 6: 6, 1Factors\ of\ 6:\ -6,\ -1
  • Final: (x6)(x1)(x - 6)(x - 1)

d) 3x2+15x423x^2 + 15x - 42

  • Factor out 3: 3(x2+5x14)3(x^2 + 5x - 14)
  • Factors of 14: 7, 2Factors\ of\ -14:\ 7,\ -2
  • Final: 3(x+7)(x2)3(x + 7)(x - 2)

e) 2x2+16x+322x^2 + 16x + 32

  • Factor out 2: 2(x2+8x+16)2(x^2 + 8x + 16)
  • x2+8x+16=(x+4)2x^2 + 8x + 16 = (x + 4)^2
  • Final: 2(x+4)22(x + 4)^2

f) 5x2+17x+65x^2 + 17x + 6

  • Factors of 30: 15, 2Factors\ of\ 30:\ 15,\ 2
  • 5x2+15x+2x+65x^2 + 15x + 2x + 6
  • Final: (5x+2)(x+3)(5x + 2)(x + 3)

g) 4x24x34x^2 - 4x - 3

  • Factors of 12: 6, 2Factors\ of\ -12:\ -6,\ 2
  • 4x26x+2x34x^2 - 6x + 2x - 3
  • Final: (2x3)(2x+1)(2x - 3)(2x + 1)

h) 6x217x+126x^2 - 17x + 12

  • Factors of 72: 8, 9Factors\ of\ 72:\ -8,\ -9
  • 6x29x8x+126x^2 - 9x - 8x + 12
  • Final: (3x4)(2x3)(3x - 4)(2x - 3)

Would you like a detailed explanation for any of these steps? Let me know!

Related Questions

  1. What is the general process for factoring out the greatest common factor (GCF)?
  2. How do you identify if an expression is a difference of two squares?
  3. What are some strategies for factoring by grouping effectively?
  4. How can trinomial expressions be solved systematically?
  5. What role does the distributive property play in factorization?

Tip

Always check your factorized results by expanding them back to ensure accuracy!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Factorization
Greatest Common Factor (GCF)
Difference of Two Squares
Grouping in Pairs
Trinomial Factorization

Formulas

Difference of squares: a^2 - b^2 = (a - b)(a + b)
General trinomial form: ax^2 + bx + c

Theorems

Distributive Property
Difference of Squares Theorem

Suitable Grade Level

Grades 8-10