Math Problem Statement

Express the integral as a limit of Riemann sums using right endpoints. Do not evaluate the limit.

8

x2 + (1/x)

dx

5

lim n→∞ n

i=1

Solution

To express the integral

58(x2+1x)dx\int_{5}^{8} \left( x^2 + \frac{1}{x} \right) \, dx

as a limit of Riemann sums using right endpoints, follow these steps:

Step 1: Define the partition and subintervals

  • The interval of integration is [5,8][5, 8].
  • Divide this interval into nn subintervals of equal width: Δx=85n=3n.\Delta x = \frac{8 - 5}{n} = \frac{3}{n}.
  • Let xi=5+iΔxx_i = 5 + i \cdot \Delta x represent the right endpoints of each subinterval.

Step 2: Write the Riemann sum

The Riemann sum using right endpoints is: Sn=i=1nf(xi)Δx,S_n = \sum_{i=1}^{n} f(x_i) \Delta x, where f(x)=x2+1xf(x) = x^2 + \frac{1}{x} and Δx=3n\Delta x = \frac{3}{n}.

Substituting f(xi)f(x_i) and Δx\Delta x, the sum becomes: Sn=i=1n((5+iΔx)2+15+iΔx)Δx.S_n = \sum_{i=1}^{n} \left( (5 + i \cdot \Delta x)^2 + \frac{1}{5 + i \cdot \Delta x} \right) \Delta x.

Step 3: Write the integral as a limit

Taking the limit as nn \to \infty, the integral becomes: 58(x2+1x)dx=limni=1n((5+3in)2+15+3in)3n.\int_{5}^{8} \left( x^2 + \frac{1}{x} \right) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left( \left( 5 + \frac{3i}{n} \right)^2 + \frac{1}{5 + \frac{3i}{n}} \right) \cdot \frac{3}{n}.

Final Answer:

58(x2+1x)dx=limni=1n((5+3in)2+15+3in)3n.\int_{5}^{8} \left( x^2 + \frac{1}{x} \right) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left( \left( 5 + \frac{3i}{n} \right)^2 + \frac{1}{5 + \frac{3i}{n}} \right) \frac{3}{n}.


Do you want further details or have any questions?

Related Questions:

  1. How would the expression change if left endpoints were used?
  2. What are the practical applications of Riemann sums in real-world problems?
  3. How do you determine the midpoint rule for a Riemann sum in this context?
  4. Can the integral 58(x2+1x)dx\int_{5}^{8} \left( x^2 + \frac{1}{x} \right) dx be computed exactly using antiderivatives?
  5. What is the significance of the Δx\Delta x term in a Riemann sum?

Tip: When practicing Riemann sums, always carefully define the function and subintervals to avoid calculation errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Riemann Sums
Limits

Formulas

Δx = (b - a)/n
Riemann sum: Sₙ = Σᵢ₌₁ⁿ f(xᵢ)Δx
Right endpoint formula: xᵢ = a + iΔx
Limit definition of an integral: ∫ₐᵇ f(x) dx = limₙ→∞ Σᵢ₌₁ⁿ f(xᵢ)Δx

Theorems

Fundamental Theorem of Calculus (part 1)
Definition of Riemann Sums

Suitable Grade Level

Grades 11-12 or early college calculus