Math Problem Statement
nakresli 2 grafy k charakteristikám exponenciálních funkcí: Charakteristika:
Pokud je a>1a>1 (např. 2x2x), funkce roste. To znamená, že jakmile zvýšíme xx, hodnota f(x)f(x) se zvyšuje.
Pokud je 0<a<10<a<1 (např. (1/2)x(1/2)x), funkce klesá. To znamená, že jakmile zvýšíme xx, hodnota f(x)f(x) se snižuje.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Exponential Functions
Growth and Decay
Algebra
Formulas
f(x) = a^x for a > 1 (Exponential Growth)
f(x) = a^x for 0 < a < 1 (Exponential Decay)
Theorems
Exponential Growth and Decay Theorem
Suitable Grade Level
Grades 9-12
Related Recommendation
Exponential Growth and Decay Functions Explained with Graphs
Graphing Exponential Functions 6^x, 5^-x, and e^-x with Decay and Growth
Understanding Characteristics of Exponential Graphs
Characteristics of Exponential Graphs: Continuous and Increasing
Characteristics of an Exponential Graph: Growth, Decay, and Asymptotes