Math Problem Statement

If 𝑋 X is a random variable with probability density function 𝑓 ( π‘₯ ) f(x), then the expected value of 𝑋 3 X 3 is given by:

A. 𝐸 ( 𝑋 3 )

∫ π‘₯ 3 / 2 𝑓 ( π‘₯ ) 𝑑 π‘₯ E(X 3 )=∫x 3/2 f(x)dx B. 𝐸 ( 𝑋 3 )

∫ π‘₯ 3 𝑓 ( π‘₯ ) 𝑑 π‘₯ E(X 3 )=∫x 3 f(x)dx C. 𝐸 ( 𝑋 3 )

∫ π‘₯ 6 𝑓 ( π‘₯ ) 𝑑 π‘₯ E(X 3 )=∫x 6 f(x)dx D. 𝐸 ( 𝑋 3 )

∫ π‘₯ 4 𝑓 ( π‘₯ ) 𝑑 π‘₯ E(X 3 )=∫x 4 f(x)dx

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Expected Value
Probability Density Function
Integration

Formulas

E(X^n) = ∫x^n f(x) dx

Theorems

Definition of Expected Value for Continuous Random Variables

Suitable Grade Level

Undergraduate - Probability and Statistics