Math Problem Statement

Use Pascal's Triangle to expand left parenthesis, 3, minus, 2, x, squared, right parenthesis, to the power 4(3−2x2)4. Express your answer in simplest form.

Solution

To expand (32x2)4(3 - 2x^2)^4 using Pascal’s Triangle, follow these steps:

Step 1: Identify the Binomial Expansion Formula

Using the Binomial Theorem: (a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k where:

  • a=3a = 3,
  • b=2x2b = -2x^2,
  • n=4n = 4.

Step 2: Find the Binomial Coefficients

From Pascal’s Triangle, the coefficients for n=4n = 4 are: 1,4,6,4,11, 4, 6, 4, 1

Step 3: Expand Using the Formula

Expanding (32x2)4(3 - 2x^2)^4:

(32x2)4=k=04(4k)(3)4k(2x2)k(3 - 2x^2)^4 = \sum_{k=0}^{4} \binom{4}{k} (3)^{4-k} (-2x^2)^k

Calculating each term:

  1. For k=0k = 0: (40)(3)4(2x2)0=1811=81\binom{4}{0} (3)^4 (-2x^2)^0 = 1 \cdot 81 \cdot 1 = 81

  2. For k=1k = 1: (41)(3)3(2x2)1=427(2x2)=216x2\binom{4}{1} (3)^3 (-2x^2)^1 = 4 \cdot 27 \cdot (-2x^2) = -216x^2

  3. For k=2k = 2: (42)(3)2(2x2)2=694x4=216x4\binom{4}{2} (3)^2 (-2x^2)^2 = 6 \cdot 9 \cdot 4x^4 = 216x^4

  4. For k=3k = 3: (43)(3)1(2x2)3=43(8x6)=96x6\binom{4}{3} (3)^1 (-2x^2)^3 = 4 \cdot 3 \cdot (-8x^6) = -96x^6

  5. For k=4k = 4: (44)(3)0(2x2)4=1116x8=16x8\binom{4}{4} (3)^0 (-2x^2)^4 = 1 \cdot 1 \cdot 16x^8 = 16x^8

Step 4: Write the Final Answer

81216x2+216x496x6+16x881 - 216x^2 + 216x^4 - 96x^6 + 16x^8

Final Answer:

81216x2+216x496x6+16x8\mathbf{81 - 216x^2 + 216x^4 - 96x^6 + 16x^8}

Would you like a breakdown of a specific step?

Here are some related questions:

  1. How do you find binomial coefficients using Pascal’s Triangle?
  2. What is the Binomial Theorem, and when is it used?
  3. How does the sign of bb in (a+b)n(a + b)^n affect the expansion?
  4. Can Pascal’s Triangle be used for negative exponents?
  5. How would the expansion change for (3+2x2)4(3 + 2x^2)^4?

Tip: Pascal’s Triangle helps quickly find coefficients without needing to compute factorials!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Expansion
Pascal's Triangle
Exponents

Formulas

Binomial Expansion Formula: (a + b)^n = Σ(n, k=0 to n) C(n, k) * a^(n-k) * b^k

Theorems

Binomial Theorem

Suitable Grade Level

Grades 8-10