Math Problem Statement

Solution

问题:

1(z2+i)(z3)\frac{1}{(z^2 + i)(z - 3)}1<z<31 < |z| < 3 内展开成洛朗级数。

解答:

要在 1<z<31 < |z| < 3 内展开成洛朗级数,我们需要将分母进行部分分式分解,然后分别在两个部分展开成幂级数。

  1. 部分分式分解:

将分母分解: 1(z2+i)(z3)=Az2+i+Bz3\frac{1}{(z^2 + i)(z - 3)} = \frac{A}{z^2 + i} + \frac{B}{z - 3}

为了找到 AABB,我们将等式两边乘以 (z2+i)(z3)(z^2 + i)(z - 3)1=A(z3)+B(z2+i)1 = A(z - 3) + B(z^2 + i)

z=3z = 31=A(33)+B(32+i)    1=B(9+i)    B=19+i1 = A(3 - 3) + B(3^2 + i) \implies 1 = B(9 + i) \implies B = \frac{1}{9 + i}

z2+i=0z^2 + i = 0,即 z2=iz^2 = -i,解得 z=±iz = \pm \sqrt{-i}。假设 z=i3/4z = i^{3/4}1=A(i3/43)+B(i3/2+i)    1=A(i3/43)1 = A(i^{3/4} - 3) + B(i^{3/2} + i) \implies 1 = A(i^{3/4} - 3) 但因为 i\sqrt{-i} 不是我们关心的范围内的点,我们直接找 z=0z = 0 处的 AA1=A(3)+B(i)    1=3A+i9+i1 = A(-3) + B(i) \implies 1 = -3A + \frac{i}{9 + i}AA1=3A+19+ii    A=13i3(9+i)1 = -3A + \frac{1}{9 + i}i \implies A = -\frac{1}{3} - \frac{i}{3(9 + i)}

  1. 级数展开:

对于 1z2+i\frac{1}{z^2 + i},在 1<z<31 < |z| < 3 以内,我们将 z2z^2 看成大于1的值,可以展开为负幂的级数: 1z2+i=1z2(1+iz2)=1z211+iz2\frac{1}{z^2 + i} = \frac{1}{z^2 (1 + \frac{i}{z^2})} = \frac{1}{z^2} \cdot \frac{1}{1 + \frac{i}{z^2}} 使用几何级数展开公式 11x=n=0xn\frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n11+iz2=n=0(iz2)n=n=0(1)ninz2n\frac{1}{1 + \frac{i}{z^2}} = \sum_{n=0}^{\infty} \left( -\frac{i}{z^2} \right)^n = \sum_{n=0}^{\infty} (-1)^n \frac{i^n}{z^{2n}} 所以 1z2+i=1z2n=0(1)ninz2n=n=0(1)ninz2(n+1)\frac{1}{z^2 + i} = \frac{1}{z^2} \sum_{n=0}^{\infty} (-1)^n \frac{i^n}{z^{2n}} = \sum_{n=0}^{\infty} (-1)^n \frac{i^n}{z^{2(n+1)}}

对于 1z3\frac{1}{z - 3}\frac{1}{z - 3} \text{ 在 } |z| > 3 \text{ 展开},但在 } 1 < |z| < 3 \text{ 内}: 1z3=13n=0(z3)n=13n=0zn3n=13n=0zn3n+1\frac{1}{z - 3} = -\frac{1}{3} \sum_{n=0}^{\infty} \left( \frac{z}{3} \right)^n = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{z^n}{3^n} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{z^n}{3^{n+1}}

综上所述,洛朗级数为: Az2+i+Bz3=(13i3(9+i))n=0(1)ninz2(n+1)+19+i(13n=0zn3n+1)\frac{A}{z^2 + i} + \frac{B}{z - 3} = \left(-\frac{1}{3} - \frac{i}{3(9 + i)}\right) \sum_{n=0}^{\infty} (-1)^n \frac{i^n}{z^{2(n+1)}} + \frac{1}{9 + i} \left(-\frac{1}{3} \sum_{n=0}^{\infty} \frac{z^n}{3^{n+1}}\right)

如有其他问题或需要进一步解释,请告诉我。

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Analysis
Laurent Series
Partial Fraction Decomposition

Formulas

Laurent series expansion
Partial fraction decomposition

Theorems

-

Suitable Grade Level

Advanced College Level