Math Problem Statement

Use Pascal's triangle to expand the expression (3a + 2b)⁷?

Solution

To expand (3a+2b)7(3a + 2b)^7 using Pascal's Triangle, we follow these steps:

  1. Identify the coefficients using Pascal's Triangle for n=7n = 7: The 7th row of Pascal's Triangle is: 1,7,21,35,35,21,7,11, 7, 21, 35, 35, 21, 7, 1

  2. Apply the binomial theorem: The binomial expansion for (x+y)n(x + y)^n is given by: (x+y)n=k=0n(nk)xnkyk(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k For (3a+2b)7(3a + 2b)^7, x=3ax = 3a, y=2by = 2b, and n=7n = 7. Now, expand term by term:

(3a+2b)7=k=07(7k)(3a)7k(2b)k(3a + 2b)^7 = \sum_{k=0}^{7} \binom{7}{k} (3a)^{7-k} (2b)^k

Using the coefficients from Pascal's Triangle, we get:

=1(3a)7(2b)0+7(3a)6(2b)1+21(3a)5(2b)2+35(3a)4(2b)3+35(3a)3(2b)4+21(3a)2(2b)5+7(3a)1(2b)6+1(3a)0(2b)7= 1(3a)^7(2b)^0 + 7(3a)^6(2b)^1 + 21(3a)^5(2b)^2 + 35(3a)^4(2b)^3 + 35(3a)^3(2b)^4 + 21(3a)^2(2b)^5 + 7(3a)^1(2b)^6 + 1(3a)^0(2b)^7

  1. Simplify each term:
  • First term: (3a)7=2187a7(3a)^7 = 2187a^7
  • Second term: 7(3a)6(2b)=7729a62b=10206a6b7(3a)^6(2b) = 7 \cdot 729a^6 \cdot 2b = 10206a^6b
  • Third term: 21(3a)5(2b)2=21243a54b2=20412a5b221(3a)^5(2b)^2 = 21 \cdot 243a^5 \cdot 4b^2 = 20412a^5b^2
  • Fourth term: 35(3a)4(2b)3=3581a48b3=22680a4b335(3a)^4(2b)^3 = 35 \cdot 81a^4 \cdot 8b^3 = 22680a^4b^3
  • Fifth term: 35(3a)3(2b)4=3527a316b4=15120a3b435(3a)^3(2b)^4 = 35 \cdot 27a^3 \cdot 16b^4 = 15120a^3b^4
  • Sixth term: 21(3a)2(2b)5=219a232b5=6048a2b521(3a)^2(2b)^5 = 21 \cdot 9a^2 \cdot 32b^5 = 6048a^2b^5
  • Seventh term: 7(3a)1(2b)6=73a64b6=1344ab67(3a)^1(2b)^6 = 7 \cdot 3a \cdot 64b^6 = 1344ab^6
  • Eighth term: (3a)0(2b)7=128b7(3a)^0(2b)^7 = 128b^7
  1. Final expanded form:

(3a+2b)7=2187a7+10206a6b+20412a5b2+22680a4b3+15120a3b4+6048a2b5+1344ab6+128b7(3a + 2b)^7 = 2187a^7 + 10206a^6b + 20412a^5b^2 + 22680a^4b^3 + 15120a^3b^4 + 6048a^2b^5 + 1344ab^6 + 128b^7

This is the complete expansion of (3a+2b)7(3a + 2b)^7.


Would you like any clarifications or further details on this?

Here are 5 related questions to expand on this topic:

  1. How would you expand (4x+y)6(4x + y)^6 using Pascal's Triangle?
  2. What is Pascal's Triangle, and how is it derived?
  3. Can you find the expansion of (2ab)5(2a - b)^5 using the binomial theorem?
  4. How does the binomial theorem apply to negative exponents?
  5. How can Pascal's Triangle be used in combinatorics?

Tip: Pascal's Triangle can help solve combinatorial problems like finding the number of ways to choose items, as its entries correspond to binomial coefficients.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Pascal's Triangle
Algebra

Formulas

Binomial expansion: (x + y)^n = Σ (n choose k) * x^(n-k) * y^k
Pascal's Triangle coefficients for n = 7: 1, 7, 21, 35, 35, 21, 7, 1

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12