Math Problem Statement

Use the Binomial Theorem to write the first three terms of (2a+b)^17.

Solution

To expand (2a+b)17(2a + b)^{17} using the Binomial Theorem, we use the formula:

(x+y)n=k=0n(nk)xnkyk(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k

Here, x=2ax = 2a, y=by = b, and n=17n = 17. The first three terms correspond to k=0,1,2k = 0, 1, 2:

Step 1: General Formula for the Terms

The kk-th term of the expansion is: Tk=(nk)(2a)nkbkT_k = \binom{n}{k} (2a)^{n-k} b^k

Step 2: Compute the First Three Terms

  1. For k=0k = 0: T0=(170)(2a)17b0=1(2a)171=(2a)17=217a17T_0 = \binom{17}{0} (2a)^{17} b^0 = 1 \cdot (2a)^{17} \cdot 1 = (2a)^{17} = 2^{17}a^{17}

  2. For k=1k = 1: T1=(171)(2a)16b1=17(2a)16b=17216a16bT_1 = \binom{17}{1} (2a)^{16} b^1 = 17 \cdot (2a)^{16} \cdot b = 17 \cdot 2^{16}a^{16}b

  3. For k=2k = 2: T2=(172)(2a)15b2=17162(2a)15b2=136215a15b2T_2 = \binom{17}{2} (2a)^{15} b^2 = \frac{17 \cdot 16}{2} \cdot (2a)^{15} \cdot b^2 = 136 \cdot 2^{15}a^{15}b^2

Step 3: Write the Expansion

The first three terms are: (2a+b)17=217a17+17216a16b+136215a15b2+(2a + b)^{17} = 2^{17}a^{17} + 17 \cdot 2^{16}a^{16}b + 136 \cdot 2^{15}a^{15}b^2 + \cdots

If needed, the values of 2172^{17}, 2162^{16}, and 2152^{15} can be computed for further simplification.


Would you like detailed simplifications or help with the numerical values?

Related Questions

  1. What are the coefficients of the first five terms in this binomial expansion?
  2. How can we calculate the value of (2a+b)17(2a + b)^{17} for specific values of aa and bb?
  3. What is the general term in the expansion of (2a+b)17(2a + b)^{17}?
  4. How does the Binomial Theorem change when nn is a non-integer?
  5. What is the role of Pascal’s Triangle in determining binomial coefficients?

Tip: Always check the exponents and coefficients carefully to avoid errors when applying the Binomial Theorem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Expansion
Exponentiation

Formulas

Binomial Theorem: (x + y)^n = ∑ (n choose k) * x^(n-k) * y^k
Combination Formula: (n choose k) = n! / (k!(n-k)!)

Theorems

Binomial Theorem

Suitable Grade Level

Grades 11-12