Math Problem Statement

Given sin(𝜃𝜃) = 3/4 where 𝜋/2 ≤ 𝜃 ≤ π, determine the exact value of sin (2𝜃). Given cos (2𝜃𝜃)= − 7/8, where 2𝜃 is an angle in standard position with a terminal arm in quadrant 3, determine the exact value of cos (𝜃𝜃) and sin (𝜃𝜃)

Solution

Part 1: Finding sin(2θ)\sin(2\theta)

Given: sin(θ)=34\sin(\theta) = \frac{3}{4} where π2θπ\frac{\pi}{2} \leq \theta \leq \pi.

We know the identity for sin(2θ)\sin(2\theta): sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta)

First, we need to find cos(θ)\cos(\theta).

Finding cos(θ)\cos(\theta)

We use the Pythagorean identity: sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1

Substituting sin(θ)=34\sin(\theta) = \frac{3}{4}: (34)2+cos2(θ)=1\left(\frac{3}{4}\right)^2 + \cos^2(\theta) = 1 916+cos2(θ)=1\frac{9}{16} + \cos^2(\theta) = 1 cos2(θ)=1916=716\cos^2(\theta) = 1 - \frac{9}{16} = \frac{7}{16} cos(θ)=±74\cos(\theta) = \pm \frac{\sqrt{7}}{4}

Since θ\theta is in the second quadrant (π2θπ\frac{\pi}{2} \leq \theta \leq \pi), where cosine is negative: cos(θ)=74\cos(\theta) = -\frac{\sqrt{7}}{4}

Now, calculate sin(2θ)\sin(2\theta):

sin(2θ)=2sin(θ)cos(θ)=2×34×(74)=378\sin(2\theta) = 2\sin(\theta)\cos(\theta) = 2 \times \frac{3}{4} \times \left(-\frac{\sqrt{7}}{4}\right) = -\frac{3\sqrt{7}}{8}

Part 2: Finding cos(θ)\cos(\theta) and sin(θ)\sin(\theta)

Given: cos(2θ)=78\cos(2\theta) = -\frac{7}{8} and 2θ2\theta is in the third quadrant.

The identities for cos(2θ)\cos(2\theta) are: cos(2θ)=2cos2(θ)1\cos(2\theta) = 2\cos^2(\theta) - 1 or cos(2θ)=12sin2(θ)\cos(2\theta) = 1 - 2\sin^2(\theta)

Solving for cos(θ)\cos(\theta):

Using cos(2θ)=2cos2(θ)1\cos(2\theta) = 2\cos^2(\theta) - 1: 78=2cos2(θ)1-\frac{7}{8} = 2\cos^2(\theta) - 1 2cos2(θ)=182\cos^2(\theta) = \frac{1}{8} cos2(θ)=116\cos^2(\theta) = \frac{1}{16} cos(θ)=±14\cos(\theta) = \pm \frac{1}{4}

Since θ\theta is in the second quadrant, cos(θ)\cos(\theta) is negative: cos(θ)=14\cos(\theta) = -\frac{1}{4}

Solving for sin(θ)\sin(\theta):

Using the identity: sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 sin2(θ)+(14)2=1\sin^2(\theta) + \left(-\frac{1}{4}\right)^2 = 1 sin2(θ)+116=1\sin^2(\theta) + \frac{1}{16} = 1 sin2(θ)=1516\sin^2(\theta) = \frac{15}{16} sin(θ)=±154\sin(\theta) = \pm \frac{\sqrt{15}}{4}

Since θ\theta is in the second quadrant, sin(θ)\sin(\theta) is positive: sin(θ)=154\sin(\theta) = \frac{\sqrt{15}}{4}

Final Answers:

  • sin(2θ)=378\sin(2\theta) = -\frac{3\sqrt{7}}{8}
  • cos(θ)=14\cos(\theta) = -\frac{1}{4}
  • sin(θ)=154\sin(\theta) = \frac{\sqrt{15}}{4}

Would you like more details on any of these steps, or do you have any further questions?

Here are some related questions:

  1. What is the significance of the Pythagorean identity?
  2. Can you find tan(2θ)\tan(2\theta) given sin(2θ)\sin(2\theta) and cos(2θ)\cos(2\theta)?
  3. How does the quadrant affect the sign of trigonometric functions?
  4. What are the double angle identities for cosine and sine?
  5. How would the solution change if θ\theta were in the fourth quadrant?
  6. Can you derive sin(2θ)\sin(2\theta) from sin(θ)\sin(\theta) and cos(θ)\cos(\theta) in a different way?
  7. What is the importance of the interval π2θπ\frac{\pi}{2} \leq \theta \leq \pi in this problem?
  8. How can we verify the calculated values using a unit circle?

Tip: When working with trigonometric identities, always pay attention to the quadrant to determine the correct sign of the function values.