Math Problem Statement

Find the exact values of the six trigonometric functions of the angle 420°.

Solution

The problem in your image asks to find the exact values of the six trigonometric functions (sine, cosine, tangent, cosecant, secant, and cotangent) for the angle 420420^\circ.

Step-by-Step Solution:

  1. Standardize the angle: To work with angles, we first reduce 420420^\circ to an equivalent angle within the standard 00^\circ to 360360^\circ range by subtracting 360360^\circ: 420360=60420^\circ - 360^\circ = 60^\circ So, sin(420)=sin(60)\sin(420^\circ) = \sin(60^\circ), and similarly for the other functions.

  2. Use known trigonometric values for 6060^\circ: From the unit circle, the trigonometric values for 6060^\circ are well-known: sin(60)=32,cos(60)=12,tan(60)=3\sin(60^\circ) = \frac{\sqrt{3}}{2}, \quad \cos(60^\circ) = \frac{1}{2}, \quad \tan(60^\circ) = \sqrt{3} Now we can find the remaining functions: csc(60)=1sin(60)=23=233,sec(60)=1cos(60)=2\csc(60^\circ) = \frac{1}{\sin(60^\circ)} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}, \quad \sec(60^\circ) = \frac{1}{\cos(60^\circ)} = 2 cot(60)=1tan(60)=13=33\cot(60^\circ) = \frac{1}{\tan(60^\circ)} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}

  3. Conclusion: The exact values of the six trigonometric functions for 420420^\circ (or 6060^\circ) are:

    • sin(420)=32\sin(420^\circ) = \frac{\sqrt{3}}{2}
    • cos(420)=12\cos(420^\circ) = \frac{1}{2}
    • tan(420)=3\tan(420^\circ) = \sqrt{3}
    • csc(420)=233\csc(420^\circ) = \frac{2\sqrt{3}}{3}
    • sec(420)=2\sec(420^\circ) = 2
    • cot(420)=33\cot(420^\circ) = \frac{\sqrt{3}}{3}

Would you like further explanation on any step or the application of trigonometric identities?

Relative Questions:

  1. How do we calculate trigonometric functions for angles greater than 360360^\circ?
  2. Why do we subtract 360360^\circ to reduce the angle to a standard form?
  3. What is the importance of the unit circle in trigonometry?
  4. How do you find the trigonometric values for angles like 4545^\circ or 3030^\circ?
  5. What is the relationship between the sine and cosecant functions?

Tip:

Always simplify angles greater than 360360^\circ by subtracting multiples of 360360^\circ to bring the angle within the first full rotation of the unit circle!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angles
Unit Circle

Formulas

sin(θ) = opposite / hypotenuse
cos(θ) = adjacent / hypotenuse
tan(θ) = opposite / adjacent
csc(θ) = 1 / sin(θ)
sec(θ) = 1 / cos(θ)
cot(θ) = 1 / tan(θ)

Theorems

Standard Position Angles
Unit Circle Theorem

Suitable Grade Level

Grades 10-12