Math Problem Statement

Find the exact value. (a) cot((5/6) 𝜋) (b) cot((− 2/3) 𝜋)

Solution

To solve the cotangent of these angles, we can use the following identity for cotangent:

cot(θ)=1tan(θ)\cot(\theta) = \frac{1}{\tan(\theta)}

(a) cot(56π)\cot\left(\frac{5}{6} \pi\right)

  1. Find the reference angle:
    56π=150\frac{5}{6} \pi = 150^\circ.
  2. Tangent of 150°:
    Since tan(150)=tan(30)=13\tan(150^\circ) = -\tan(30^\circ) = -\frac{1}{\sqrt{3}}, the cotangent is:
    cot(56π)=113=3\cot\left(\frac{5}{6} \pi\right) = \frac{1}{-\frac{1}{\sqrt{3}}} = -\sqrt{3} So, cot(56π)=3\cot\left(\frac{5}{6} \pi\right) = -\sqrt{3}.

(b) cot(23π)\cot\left(-\frac{2}{3} \pi\right)

  1. Find the reference angle:
    23π=120-\frac{2}{3} \pi = -120^\circ. In the third quadrant, where 120-120^\circ lies, tangent is positive.
  2. Tangent of 120°:
    tan(120)=tan(60)=3\tan(120^\circ) = -\tan(60^\circ) = -\sqrt{3}. Therefore, the cotangent is:
    cot(23π)=13=13\cot\left(-\frac{2}{3} \pi\right) = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}} So, cot(23π)=13\cot\left(-\frac{2}{3} \pi\right) = -\frac{1}{\sqrt{3}}.

Final answers:

  • (a) cot(56π)=3\cot\left(\frac{5}{6} \pi\right) = -\sqrt{3}
  • (b) cot(23π)=13\cot\left(-\frac{2}{3} \pi\right) = -\frac{1}{\sqrt{3}}

Would you like further details on any step, or have any questions?

5 Related Questions:

  1. What is the relationship between cotangent and sine/cosine?
  2. How can we find the reference angle of a negative angle?
  3. What is the value of cot(76π)\cot(\frac{7}{6}\pi)?
  4. How can we determine the sign of trigonometric functions in different quadrants?
  5. What is the exact value of tan(116π)\tan\left(\frac{11}{6}\pi\right)?

Tip:

Always remember to determine in which quadrant the angle lies, as it affects the sign of trigonometric functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cotangent
Reference Angles
Quadrants

Formulas

cot(θ) = 1 / tan(θ)

Theorems

Reference Angle Theorem
Signs of Trigonometric Functions in Quadrants

Suitable Grade Level

Grades 10-12