Math Problem Statement

Use the​ Half-angle Formulas to find the exact value of tangent StartFraction 7 pi Over 8 EndFraction .

Solution

To find the exact value of tan(7π8)\tan\left(\frac{7\pi}{8}\right) using the half-angle formulas, follow these steps:


Step 1: Recall the Half-Angle Formula for Tangent

The half-angle formula for tangent is given as: tan(θ2)=±1cosθ1+cosθ\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}} The sign (++ or -) depends on the quadrant in which θ2\frac{\theta}{2} lies.


Step 2: Identify θ\theta

In this case, 7π8\frac{7\pi}{8} is already a half-angle. Hence, let θ=7π4\theta = \frac{7\pi}{4}, so: θ2=7π8\frac{\theta}{2} = \frac{7\pi}{8}

7π8\frac{7\pi}{8} lies in the second quadrant, where tangent is negative. Thus, we take the negative root of the formula.


Step 3: Find cosθ\cos\theta

For θ=7π4\theta = \frac{7\pi}{4}, recall the cosine value in the fourth quadrant: cos(7π4)=cos(2ππ4)=cos(π4)=cos(π4)=22.\cos\left(\frac{7\pi}{4}\right) = \cos\left(2\pi - \frac{\pi}{4}\right) = \cos\left(-\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}.


Step 4: Apply the Half-Angle Formula

Substitute cosθ=22\cos\theta = \frac{\sqrt{2}}{2} into the formula: tan(θ2)=1cosθ1+cosθ.\tan\left(\frac{\theta}{2}\right) = -\sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}. tan(7π8)=1221+22.\tan\left(\frac{7\pi}{8}\right) = -\sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{1 + \frac{\sqrt{2}}{2}}}.


Step 5: Simplify the Numerator and Denominator

  1. Simplify the numerator 1221 - \frac{\sqrt{2}}{2}: 122=2222=222.1 - \frac{\sqrt{2}}{2} = \frac{2}{2} - \frac{\sqrt{2}}{2} = \frac{2 - \sqrt{2}}{2}.

  2. Simplify the denominator 1+221 + \frac{\sqrt{2}}{2}: 1+22=22+22=2+22.1 + \frac{\sqrt{2}}{2} = \frac{2}{2} + \frac{\sqrt{2}}{2} = \frac{2 + \sqrt{2}}{2}.

  3. Substitute back: tan(7π8)=2222+22.\tan\left(\frac{7\pi}{8}\right) = -\sqrt{\frac{\frac{2 - \sqrt{2}}{2}}{\frac{2 + \sqrt{2}}{2}}}.

  4. Simplify the fraction: 2222+22=222+2.\frac{\frac{2 - \sqrt{2}}{2}}{\frac{2 + \sqrt{2}}{2}} = \frac{2 - \sqrt{2}}{2 + \sqrt{2}}.


Step 6: Rationalize the Denominator

Multiply numerator and denominator by the conjugate of 2+22 + \sqrt{2}, which is 222 - \sqrt{2}: 222+22222=(22)2(2+2)(22).\frac{2 - \sqrt{2}}{2 + \sqrt{2}} \cdot \frac{2 - \sqrt{2}}{2 - \sqrt{2}} = \frac{(2 - \sqrt{2})^2}{(2 + \sqrt{2})(2 - \sqrt{2})}.

  1. Expand the numerator: (22)2=442+2=642.(2 - \sqrt{2})^2 = 4 - 4\sqrt{2} + 2 = 6 - 4\sqrt{2}.

  2. Simplify the denominator: (2+2)(22)=42=2.(2 + \sqrt{2})(2 - \sqrt{2}) = 4 - 2 = 2.

  3. Combine results: 222+2=6422=322.\frac{2 - \sqrt{2}}{2 + \sqrt{2}} = \frac{6 - 4\sqrt{2}}{2} = 3 - 2\sqrt{2}.

  4. Add the negative sign: tan(7π8)=(322).\tan\left(\frac{7\pi}{8}\right) = -(3 - 2\sqrt{2}).


Final Answer

tan(7π8)=3+22.\tan\left(\frac{7\pi}{8}\right) = -3 + 2\sqrt{2}.


Do you have any questions or would you like further clarification? 😊

Related Questions:

  1. How do you derive the half-angle formulas for trigonometric functions?
  2. What are the quadrants where tangent is positive or negative?
  3. Can the double-angle formula for tangent also solve this problem?
  4. How do you calculate exact values of trigonometric functions for special angles?
  5. What is the relation between tangent, sine, and cosine in such problems?

Tip:

Always consider the quadrant to determine the correct sign when using half-angle or other trigonometric formulas!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Half-angle Formulas
Exact Values of Trigonometric Functions

Formulas

Half-angle formula for tangent: tan(θ/2) = ±√((1 - cos(θ)) / (1 + cos(θ)))

Theorems

Trigonometric Properties of Angles
Rationalization of Fractions

Suitable Grade Level

Grades 10-12