Math Problem Statement

Find the following for the function f left parenthesis x right parenthesis equals 3 x squared plus 2 x minus 2.

​(a) f left parenthesis 0 right parenthesis ​(b) f left parenthesis 4 right parenthesis ​(c) f left parenthesis negative 4 right parenthesis ​(d) f left parenthesis negative x right parenthesis ​(e) negative f left parenthesis x right parenthesis ​(f)​ f(xplus2​) ​(g) ​f(3​x) ​(h) f left parenthesis x plus h right parenthesis

Solution

Given the function f(x)=3x2+2x2f(x) = 3x^2 + 2x - 2, let's calculate the required values:

(a) f(0)f(0)

Substitute x=0x = 0 into the function: f(0)=3(0)2+2(0)2=2f(0) = 3(0)^2 + 2(0) - 2 = -2

(b) f(4)f(4)

Substitute x=4x = 4 into the function: f(4)=3(4)2+2(4)2=3(16)+82=48+82=54f(4) = 3(4)^2 + 2(4) - 2 = 3(16) + 8 - 2 = 48 + 8 - 2 = 54

(c) f(4)f(-4)

Substitute x=4x = -4 into the function: f(4)=3(4)2+2(4)2=3(16)82=4882=38f(-4) = 3(-4)^2 + 2(-4) - 2 = 3(16) - 8 - 2 = 48 - 8 - 2 = 38

(d) f(x)f(-x)

Substitute x=xx = -x into the function: f(x)=3(x)2+2(x)2=3x22x2f(-x) = 3(-x)^2 + 2(-x) - 2 = 3x^2 - 2x - 2

(e) f(x)-f(x)

Negate the function: f(x)=(3x2+2x2)=3x22x+2-f(x) = -(3x^2 + 2x - 2) = -3x^2 - 2x + 2

(f) f(x+2)f(x + 2)

Substitute x+2x + 2 into the function: f(x+2)=3(x+2)2+2(x+2)2f(x + 2) = 3(x + 2)^2 + 2(x + 2) - 2 First expand (x+2)2(x + 2)^2: (x+2)2=x2+4x+4(x + 2)^2 = x^2 + 4x + 4 Now substitute and expand: f(x+2)=3(x2+4x+4)+2(x+2)2=3x2+12x+12+2x+42=3x2+14x+14f(x + 2) = 3(x^2 + 4x + 4) + 2(x + 2) - 2 = 3x^2 + 12x + 12 + 2x + 4 - 2 = 3x^2 + 14x + 14

(g) f(3x)f(3x)

Substitute 3x3x into the function: f(3x)=3(3x)2+2(3x)2=3(9x2)+6x2=27x2+6x2f(3x) = 3(3x)^2 + 2(3x) - 2 = 3(9x^2) + 6x - 2 = 27x^2 + 6x - 2

(h) f(x+h)f(x + h)

Substitute x+hx + h into the function: f(x+h)=3(x+h)2+2(x+h)2f(x + h) = 3(x + h)^2 + 2(x + h) - 2 First expand (x+h)2(x + h)^2: (x+h)2=x2+2xh+h2(x + h)^2 = x^2 + 2xh + h^2 Now substitute and expand: f(x+h)=3(x2+2xh+h2)+2(x+h)2=3x2+6xh+3h2+2x+2h2f(x + h) = 3(x^2 + 2xh + h^2) + 2(x + h) - 2 = 3x^2 + 6xh + 3h^2 + 2x + 2h - 2

Let me know if you'd like further details on any part! Here are some related questions:

  1. How do you find the derivative of f(x)f(x)?
  2. What is the vertex of the parabola f(x)=3x2+2x2f(x) = 3x^2 + 2x - 2?
  3. How do you find the zeros of the function f(x)=3x2+2x2f(x) = 3x^2 + 2x - 2?
  4. What is the axis of symmetry for the parabola f(x)f(x)?
  5. How do you graph f(x)=3x2+2x2f(x) = 3x^2 + 2x - 2?

Tip: When finding f(x+h)f(x + h), carefully expand the squares and simplify terms to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Functions
Function Evaluation

Formulas

f(x) = ax^2 + bx + c (quadratic function)
f(x + h) expansion
Substituting values into quadratic functions

Theorems

Quadratic function properties

Suitable Grade Level

Grades 9-12