Math Problem Statement

For the function f(x) given below, evaluate lim_{x→∞} f(x) and lim_{x→-∞} f(x). f(x) = 2x + √(6x² - 2) Provide your answer below: lim_{x→∞} f(x) = ___ lim_{x→-∞} f(x) = ___

Solution

The problem asks to evaluate the limits of the function f(x)=2x+6x22f(x) = 2x + \sqrt{6x^2 - 2} as xx approaches positive infinity (\infty) and negative infinity (-\infty).

Let's break it down step by step.

1. Limit as xx approaches ++\infty:

limx+f(x)=limx+(2x+6x22)\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left( 2x + \sqrt{6x^2 - 2} \right)

First, notice that as xx becomes very large, 6x226x^2 - 2 behaves very similarly to 6x26x^2. So, the square root 6x22\sqrt{6x^2 - 2} behaves like 6x2=6x\sqrt{6x^2} = \sqrt{6} \cdot |x|.

Since xx is approaching ++\infty, x=x|x| = x, so: limx+6x22=limx+6x=6x\lim_{x \to +\infty} \sqrt{6x^2 - 2} = \lim_{x \to +\infty} \sqrt{6} \cdot x = \sqrt{6} \cdot x

Thus: limx+f(x)=limx+(2x+6x)=limx+((2+6)x)=+\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left( 2x + \sqrt{6} \cdot x \right) = \lim_{x \to +\infty} \left( (2 + \sqrt{6})x \right) = +\infty

2. Limit as xx approaches -\infty:

limxf(x)=limx(2x+6x22)\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left( 2x + \sqrt{6x^2 - 2} \right)

Again, using the approximation 6x226x\sqrt{6x^2 - 2} \approx \sqrt{6} \cdot |x|, but this time as xx approaches -\infty, x=x|x| = -x.

So: limx6x22=limx6(x)=6x\lim_{x \to -\infty} \sqrt{6x^2 - 2} = \lim_{x \to -\infty} \sqrt{6} \cdot (-x) = -\sqrt{6} \cdot x

Thus: limxf(x)=limx(2x6x)=limx((26)x)\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left( 2x - \sqrt{6} \cdot x \right) = \lim_{x \to -\infty} \left( (2 - \sqrt{6})x \right)

Here, 262 - \sqrt{6} is a negative number (approximately -0.45), so: limxf(x)=\lim_{x \to -\infty} f(x) = -\infty

Summary of Answers:

  • limx+f(x)=+\lim_{x \to +\infty} f(x) = +\infty
  • limxf(x)=\lim_{x \to -\infty} f(x) = -\infty

Would you like further details on the steps, or do you have any additional questions?


Here are five related questions you might consider exploring:

  1. How would the function f(x)=2x+6x22f(x) = 2x + \sqrt{6x^2 - 2} behave if the square root term was instead 6x2+2\sqrt{6x^2 + 2}?
  2. What is the significance of the coefficient 6\sqrt{6} in this context?
  3. How would you find the horizontal asymptotes of f(x)f(x) for other similar functions?
  4. Can you graph f(x)f(x) to visually confirm the limits?
  5. What happens to the function f(x)=2x+6x22f(x) = 2x + \sqrt{6x^2 - 2} as xx approaches zero?

Tip: When dealing with limits involving square roots, factor out the highest power of xx to simplify the expression.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Infinity
Square Root
Asymptotic Behavior

Formulas

lim_{x→∞} f(x)
lim_{x→-∞} f(x)

Theorems

Limit Theorems

Suitable Grade Level

High School (Grades 10-12)