The problem asks to evaluate the limits of the function f ( x ) = 2 x + 6 x 2 − 2 f(x) = 2x + \sqrt{6x^2 - 2} f ( x ) = 2 x + 6 x 2 − 2 as x x x approaches positive infinity (∞ \infty ∞ ) and negative infinity (− ∞ -\infty − ∞ ).
Let's break it down step by step.
1. Limit as x x x approaches + ∞ +\infty + ∞ :
lim x → + ∞ f ( x ) = lim x → + ∞ ( 2 x + 6 x 2 − 2 ) \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left( 2x + \sqrt{6x^2 - 2} \right) lim x → + ∞ f ( x ) = lim x → + ∞ ( 2 x + 6 x 2 − 2 )
First, notice that as x x x becomes very large, 6 x 2 − 2 6x^2 - 2 6 x 2 − 2 behaves very similarly to 6 x 2 6x^2 6 x 2 . So, the square root 6 x 2 − 2 \sqrt{6x^2 - 2} 6 x 2 − 2 behaves like 6 x 2 = 6 ⋅ ∣ x ∣ \sqrt{6x^2} = \sqrt{6} \cdot |x| 6 x 2 = 6 ⋅ ∣ x ∣ .
Since x x x is approaching + ∞ +\infty + ∞ , ∣ x ∣ = x |x| = x ∣ x ∣ = x , so:
lim x → + ∞ 6 x 2 − 2 = lim x → + ∞ 6 ⋅ x = 6 ⋅ x \lim_{x \to +\infty} \sqrt{6x^2 - 2} = \lim_{x \to +\infty} \sqrt{6} \cdot x = \sqrt{6} \cdot x lim x → + ∞ 6 x 2 − 2 = lim x → + ∞ 6 ⋅ x = 6 ⋅ x
Thus:
lim x → + ∞ f ( x ) = lim x → + ∞ ( 2 x + 6 ⋅ x ) = lim x → + ∞ ( ( 2 + 6 ) x ) = + ∞ \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left( 2x + \sqrt{6} \cdot x \right) = \lim_{x \to +\infty} \left( (2 + \sqrt{6})x \right) = +\infty lim x → + ∞ f ( x ) = lim x → + ∞ ( 2 x + 6 ⋅ x ) = lim x → + ∞ ( ( 2 + 6 ) x ) = + ∞
2. Limit as x x x approaches − ∞ -\infty − ∞ :
lim x → − ∞ f ( x ) = lim x → − ∞ ( 2 x + 6 x 2 − 2 ) \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left( 2x + \sqrt{6x^2 - 2} \right) lim x → − ∞ f ( x ) = lim x → − ∞ ( 2 x + 6 x 2 − 2 )
Again, using the approximation 6 x 2 − 2 ≈ 6 ⋅ ∣ x ∣ \sqrt{6x^2 - 2} \approx \sqrt{6} \cdot |x| 6 x 2 − 2 ≈ 6 ⋅ ∣ x ∣ , but this time as x x x approaches − ∞ -\infty − ∞ , ∣ x ∣ = − x |x| = -x ∣ x ∣ = − x .
So:
lim x → − ∞ 6 x 2 − 2 = lim x → − ∞ 6 ⋅ ( − x ) = − 6 ⋅ x \lim_{x \to -\infty} \sqrt{6x^2 - 2} = \lim_{x \to -\infty} \sqrt{6} \cdot (-x) = -\sqrt{6} \cdot x lim x → − ∞ 6 x 2 − 2 = lim x → − ∞ 6 ⋅ ( − x ) = − 6 ⋅ x
Thus:
lim x → − ∞ f ( x ) = lim x → − ∞ ( 2 x − 6 ⋅ x ) = lim x → − ∞ ( ( 2 − 6 ) x ) \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left( 2x - \sqrt{6} \cdot x \right) = \lim_{x \to -\infty} \left( (2 - \sqrt{6})x \right) lim x → − ∞ f ( x ) = lim x → − ∞ ( 2 x − 6 ⋅ x ) = lim x → − ∞ ( ( 2 − 6 ) x )
Here, 2 − 6 2 - \sqrt{6} 2 − 6 is a negative number (approximately -0.45), so:
lim x → − ∞ f ( x ) = − ∞ \lim_{x \to -\infty} f(x) = -\infty lim x → − ∞ f ( x ) = − ∞
Summary of Answers:
lim x → + ∞ f ( x ) = + ∞ \lim_{x \to +\infty} f(x) = +\infty lim x → + ∞ f ( x ) = + ∞
lim x → − ∞ f ( x ) = − ∞ \lim_{x \to -\infty} f(x) = -\infty lim x → − ∞ f ( x ) = − ∞
Would you like further details on the steps, or do you have any additional questions?
Here are five related questions you might consider exploring:
How would the function f ( x ) = 2 x + 6 x 2 − 2 f(x) = 2x + \sqrt{6x^2 - 2} f ( x ) = 2 x + 6 x 2 − 2 behave if the square root term was instead 6 x 2 + 2 \sqrt{6x^2 + 2} 6 x 2 + 2 ?
What is the significance of the coefficient 6 \sqrt{6} 6 in this context?
How would you find the horizontal asymptotes of f ( x ) f(x) f ( x ) for other similar functions?
Can you graph f ( x ) f(x) f ( x ) to visually confirm the limits?
What happens to the function f ( x ) = 2 x + 6 x 2 − 2 f(x) = 2x + \sqrt{6x^2 - 2} f ( x ) = 2 x + 6 x 2 − 2 as x x x approaches zero?
Tip: When dealing with limits involving square roots, factor out the highest power of x x x to simplify the expression.