Math Problem Statement

Evaluate the limits of the following functions: 1. \( \lim_{{x \to 0}} \frac{|x|}{x} \) 2. \( \lim_{{x \to 0}} \frac{5^x - 1}{3^x - 1} \)

Solution

Let's solve each of these limits step-by-step.

Problem (i)

limx0xx\lim_{{x \to 0}} \frac{|x|}{x}

This limit depends on the direction from which xx approaches 0, due to the absolute value in the numerator.

  1. As x0+x \to 0^+ (from the right): x=x|x| = x, so: xx=xx=1\frac{|x|}{x} = \frac{x}{x} = 1 Therefore, limx0+xx=1\lim_{{x \to 0^+}} \frac{|x|}{x} = 1

  2. As x0x \to 0^- (from the left): x=x|x| = -x, so: xx=xx=1\frac{|x|}{x} = \frac{-x}{x} = -1 Therefore, limx0xx=1\lim_{{x \to 0^-}} \frac{|x|}{x} = -1

Since the left-hand limit and right-hand limit are not equal, the two-sided limit does not exist: limx0xx does not exist\lim_{{x \to 0}} \frac{|x|}{x} \text{ does not exist}

Problem (ii)

limx05x13x1\lim_{{x \to 0}} \frac{5^x - 1}{3^x - 1}

To evaluate this, we can use the fact that for any constant aa, limx0ax1x=ln(a)\lim_{{x \to 0}} \frac{a^x - 1}{x} = \ln(a). Therefore, we can rewrite this limit as:

limx05x13x1=limx05x1xlimx03x1x\lim_{{x \to 0}} \frac{5^x - 1}{3^x - 1} = \frac{\lim_{{x \to 0}} \frac{5^x - 1}{x}}{\lim_{{x \to 0}} \frac{3^x - 1}{x}}

Using the property mentioned: limx05x1x=ln(5)andlimx03x1x=ln(3)\lim_{{x \to 0}} \frac{5^x - 1}{x} = \ln(5) \quad \text{and} \quad \lim_{{x \to 0}} \frac{3^x - 1}{x} = \ln(3)

Thus, limx05x13x1=ln(5)ln(3)\lim_{{x \to 0}} \frac{5^x - 1}{3^x - 1} = \frac{\ln(5)}{\ln(3)}

Final Answers

  1. (i) limx0xx\lim_{{x \to 0}} \frac{|x|}{x}: The limit does not exist.
  2. (ii) limx05x13x1=ln(5)ln(3)\lim_{{x \to 0}} \frac{5^x - 1}{3^x - 1} = \frac{\ln(5)}{\ln(3)}

Would you like more details on any part of the solution?

Related Questions

  1. What is the interpretation of left-hand and right-hand limits?
  2. How do we evaluate limits involving exponential functions without L'Hôpital's rule?
  3. Can we use L'Hôpital's rule directly on 5x13x1\frac{5^x - 1}{3^x - 1}?
  4. What are some properties of logarithmic functions used in limits?
  5. How do limits of absolute values affect the existence of two-sided limits?

Tip

When dealing with limits that involve different behaviors from the left and right, always check both one-sided limits separately.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Absolute Value
Exponential Functions
Logarithmic Functions

Formulas

\( \lim_{{x \to 0^+}} \frac{|x|}{x} \), \( \lim_{{x \to 0^-}} \frac{|x|}{x} \)
\( \lim_{{x \to 0}} \frac{a^x - 1}{x} = \ln(a) \)

Theorems

Limit Definition
One-Sided Limits
Properties of Exponential and Logarithmic Functions

Suitable Grade Level

College Level Calculus