Math Problem Statement

Evaluate the following integral using trigonometric substitution: ∫ dx / (x^4 * sqrt(9 - x^2))

Solution

The problem is asking to evaluate the integral using trigonometric substitution. The integral is:

dxx49x2\int \frac{dx}{x^4 \sqrt{9 - x^2}}

Solution Steps:

  1. Identify the Trigonometric Substitution: Notice that the integrand contains 9x2\sqrt{9 - x^2}. This suggests using the substitution x=3sinθx = 3\sin\theta, because 9x2\sqrt{9 - x^2} will simplify using the Pythagorean identity sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1.

    Set x=3sinθx = 3\sin\theta, so dx=3cosθdθdx = 3\cos\theta \, d\theta.

  2. Substitute into the Integral: Substituting x=3sinθx = 3\sin\theta and dx=3cosθdθdx = 3\cos\theta \, d\theta into the integral:

    3cosθdθ(3sinθ)49(3sinθ)2\int \frac{3\cos\theta \, d\theta}{(3\sin\theta)^4 \sqrt{9 - (3\sin\theta)^2}}

    Simplifying further:

    =3cosθdθ81sin4θ9(1sin2θ)= \int \frac{3\cos\theta \, d\theta}{81\sin^4\theta \cdot \sqrt{9(1 - \sin^2\theta)}}

    Recall that 1sin2θ=cosθ\sqrt{1 - \sin^2\theta} = \cos\theta, so:

    =3cosθdθ81sin4θ3cosθ= \int \frac{3\cos\theta \, d\theta}{81\sin^4\theta \cdot 3\cos\theta}

    This simplifies to:

    =181dθsin4θ= \frac{1}{81} \int \frac{d\theta}{\sin^4\theta}

  3. Simplify the Trigonometric Integral: The integral dθsin4θ\int \frac{d\theta}{\sin^4\theta} can be rewritten using the identity cscθ=1sinθ\csc\theta = \frac{1}{\sin\theta}:

    =181csc4θdθ= \frac{1}{81} \int \csc^4\theta \, d\theta

    This integral is typically solved using reduction formulas or by recognizing standard integrals. The reduction formula for cscnθdθ\int \csc^n \theta \, d\theta is complex, so instead, we'll recognize a known integral:

    csc4θdθ=cosθcsc2θ32θ3+C\int \csc^4 \theta \, d\theta = -\frac{\cos\theta \csc^2\theta}{3} - \frac{2\theta}{3} + C

    Thus:

    181(cosθcsc2θ32θ3)+C\frac{1}{81} \left(-\frac{\cos\theta \csc^2\theta}{3} - \frac{2\theta}{3} \right) + C

  4. Back-Substitute xx: Recall x=3sinθx = 3\sin\theta, so sinθ=x3\sin\theta = \frac{x}{3}. Therefore, θ=arcsin(x3)\theta = \arcsin\left(\frac{x}{3}\right).

    Also, cosθ=1sin2θ=1x29\cos\theta = \sqrt{1 - \sin^2\theta} = \sqrt{1 - \frac{x^2}{9}}.

    Substituting back into the expression:

    1243(1x299x2)2243arcsin(x3)+C-\frac{1}{243} \left(\sqrt{1 - \frac{x^2}{9}} \cdot \frac{9}{x^2} \right) - \frac{2}{243}\arcsin\left(\frac{x}{3}\right) + C

    Simplify the expression to get the final answer.

Would you like me to go into more detail on any part of the solution, or do you have any specific questions?

Related Questions:

  1. How do you evaluate integrals involving a2x2\sqrt{a^2 - x^2} in general?
  2. What are the standard trigonometric substitution identities and when are they applied?
  3. How is the integral of cscnθ\csc^n \theta derived?
  4. Can trigonometric substitution be used for integrals involving x2+a2\sqrt{x^2 + a^2}?
  5. What is the geometric interpretation of trigonometric substitution in integrals?

Tip:

When using trigonometric substitution, always double-check the identity you are using, and remember to convert back to the original variable at the end.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Trigonometric Substitution
Definite Integrals

Formulas

Trigonometric Substitution: x = 3sin(θ), dx = 3cos(θ) dθ
Pythagorean Identity: sin^2(θ) + cos^2(θ) = 1
Integral of csc^4(θ): ∫ csc^4(θ) dθ

Theorems

Trigonometric Substitution Theorem
Reduction Formula for Trigonometric Integrals

Suitable Grade Level

College Level (Calculus II or III)