Math Problem Statement

Evaluate the improper integral from 2 to infinity of 1 / [x * (ln(x))^7] dx. Use the result to determine the convergence of the series Σ from n=2 to infinity of 1 / [n * (ln(n))^7]. Then, approximate the series using the first 6 terms.

Solution

Part (a): Evaluate the Improper Integral

We are tasked to evaluate the improper integral:

21x(ln(x))7dx\int_{2}^\infty \frac{1}{x(\ln(x))^7} \, dx


Steps:

  1. Substitute: Let u=ln(x)u = \ln(x), so du=1xdxdu = \frac{1}{x} dx. The limits of integration transform as follows:

    • When x=2x = 2, u=ln(2)u = \ln(2),
    • When xx \to \infty, uu \to \infty.

    The integral becomes: 21x(ln(x))7dx=ln(2)1u7du\int_{2}^\infty \frac{1}{x(\ln(x))^7} \, dx = \int_{\ln(2)}^\infty \frac{1}{u^7} \, du

  2. Integrate: The integral of 1u7\frac{1}{u^7} is: 1u7du=16u6\int \frac{1}{u^7} \, du = \frac{-1}{6u^6}

    Apply the limits: ln(2)1u7du=[16u6]ln(2)\int_{\ln(2)}^\infty \frac{1}{u^7} \, du = \left[ \frac{-1}{6u^6} \right]_{\ln(2)}^\infty

    At u=u = \infty, 16u60\frac{-1}{6u^6} \to 0. At u=ln(2)u = \ln(2), substitute u=ln(2)u = \ln(2): ln(2)1u7du=016(ln(2))6=16(ln(2))6\int_{\ln(2)}^\infty \frac{1}{u^7} \, du = 0 - \frac{-1}{6 (\ln(2))^6} = \frac{1}{6 (\ln(2))^6}

Thus, the value of the improper integral is: 16(ln(2))6\boxed{\frac{1}{6 (\ln(2))^6}}


Part (b): Convergence of the Series

The integral test states that if the improper integral converges, the corresponding series also converges. Since the improper integral:

21x(ln(x))7dx\int_{2}^\infty \frac{1}{x (\ln(x))^7} \, dx

converges, the series:

n=21n(ln(n))7\sum_{n=2}^\infty \frac{1}{n (\ln(n))^7}

also converges. Therefore, the answer is:

the series converges\boxed{\text{the series converges}}


Part (c): Approximation Using 6 Terms

To approximate n=21n(ln(n))7\sum_{n=2}^\infty \frac{1}{n (\ln(n))^7} using the first 6 terms, compute:

Terms: 12(ln(2))7,13(ln(3))7,14(ln(4))7,15(ln(5))7,16(ln(6))7,17(ln(7))7\text{Terms: } \frac{1}{2 (\ln(2))^7}, \frac{1}{3 (\ln(3))^7}, \frac{1}{4 (\ln(4))^7}, \frac{1}{5 (\ln(5))^7}, \frac{1}{6 (\ln(6))^7}, \frac{1}{7 (\ln(7))^7}

I'll compute these values.import numpy as np

Define the terms for the series approximation

n_values = np.arange(2, 8) # n = 2 to n = 7 terms = 1 / (n_values * (np.log(n_values))**7)

Compute the sum of the first 6 terms

approximation = np.sum(terms)

Display the individual terms and their sum

terms, approximation(array([6.50416840e+00, 1.72570905e-01, 2.54069078e-02, 7.15007180e-03, 2.81119383e-03, 1.35220481e-03]), 6.713459682493644)(array([6.50416840e+00, 1.72570905e-01, 2.54069078e-02, 7.15007180e-03, 2.81119383e-03, 1.35220481e-03]), 6.713459682493644)success### Results for Part (c): The individual terms are:

\frac{1}{2(\ln(2))^7} & \approx 6.5042 \\ \frac{1}{3(\ln(3))^7} & \approx 0.1726 \\ \frac{1}{4(\ln(4))^7} & \approx 0.0254 \\ \frac{1}{5(\ln(5))^7} & \approx 0.0072 \\ \frac{1}{6(\ln(6))^7} & \approx 0.0028 \\ \frac{1}{7(\ln(7))^7} & \approx 0.0014 \\ \end{aligned}$$ Summing these terms gives the approximation: $$\sum_{n=2}^7 \frac{1}{n(\ln(n))^7} \approx 6.7135$$ ### Final Answer: The approximation using the first 6 terms is: $$\boxed{6.7135}$$ --- Do you have any questions or need further clarification? Here are some related questions to deepen your understanding: 1. How does the substitution method simplify improper integrals? 2. Why does the convergence of the improper integral imply the series also converges? 3. Can the integral test be used if the terms are not positive? 4. What would happen to the series if the exponent in $$(\ln(x))^7$$ was smaller? 5. How can numerical approximations of series be used in practical scenarios? **Tip:** For improper integrals, always verify the conditions for convergence (positivity and proper limits) before using the integral test.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Improper Integrals
Convergence of Series
Integral Test

Formulas

∫ from 2 to ∞ of 1 / [x * (ln(x))^7] dx
Series approximation using partial sum

Theorems

Integral Test for Convergence

Suitable Grade Level

College Calculus