Math Problem Statement

Evaluate using the properties of exponents: L1) a) 20^0, b) 5^3 × 5^4, c) 5^8 / 5^7, d) (5^2)^3; L2) a) 5^-4, b) 1 / 3^-5, c) 4^-8 / 4^-5, d) (4^-2)^-5; Extension: Evaluate (3^-9 / 3^-6) × (3^2)^5

Solution

Let's go through the questions shown on the board, which are related to the properties of exponents:

L1: Evaluate

  1. a) 20020^0

    • Any non-zero number raised to the power of 0 is 1.
    • 200=120^0 = 1
  2. b) 53×545^3 \times 5^4

    • Use the property am×an=am+na^m \times a^n = a^{m+n}.
    • 53×54=53+4=575^3 \times 5^4 = 5^{3+4} = 5^7
  3. c) 5857\frac{5^8}{5^7}

    • Use the property aman=amn\frac{a^m}{a^n} = a^{m-n}.
    • 5857=587=51=5\frac{5^8}{5^7} = 5^{8-7} = 5^1 = 5
  4. d) (52)3(5^2)^3

    • Use the property (am)n=am×n(a^m)^n = a^{m \times n}.
    • (52)3=52×3=56(5^2)^3 = 5^{2 \times 3} = 5^6

L2: Evaluate

  1. a) 545^{-4}

    • Use the property an=1ana^{-n} = \frac{1}{a^n}.
    • 54=1545^{-4} = \frac{1}{5^4}
  2. b) 135\frac{1}{3^{-5}}

    • Simplify the negative exponent using 1an=an\frac{1}{a^{-n}} = a^n.
    • 135=35\frac{1}{3^{-5}} = 3^5
  3. c) 4845\frac{4^{-8}}{4^{-5}}

    • Use aman=amn\frac{a^m}{a^n} = a^{m-n}.
    • 4845=48(5)=43=143\frac{4^{-8}}{4^{-5}} = 4^{-8 - (-5)} = 4^{-3} = \frac{1}{4^3}
  4. d) (42)5(4^{-2})^{-5}

    • Use (am)n=am×n(a^m)^n = a^{m \times n}.
    • (42)5=4(2)×(5)=410(4^{-2})^{-5} = 4^{(-2) \times (-5)} = 4^{10}

Extension:

Evaluate 3936×(32)5\frac{3^{-9}}{3^{-6}} \times (3^2)^5

  1. Simplify 3936\frac{3^{-9}}{3^{-6}} using aman=amn\frac{a^m}{a^n} = a^{m-n}:

    • 3936=39(6)=33\frac{3^{-9}}{3^{-6}} = 3^{-9 - (-6)} = 3^{-3}
  2. Simplify (32)5(3^2)^5 using (am)n=am×n(a^m)^n = a^{m \times n}:

    • (32)5=32×5=310(3^2)^5 = 3^{2 \times 5} = 3^{10}
  3. Multiply the results:

    • 33×310=33+10=373^{-3} \times 3^{10} = 3^{-3 + 10} = 3^7

Would you like further details or have any questions?

5 Related Questions:

  1. What is the general rule for multiplying powers with the same base?
  2. How do you handle negative exponents in fractional form?
  3. How does raising a power to another power work?
  4. What is the rule for dividing powers with the same base?
  5. How do you simplify an expression with a zero exponent?

Tip:

When dealing with exponents, always remember to apply the correct exponent rule based on the operation (multiplication, division, or power to power).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Properties of Exponents
Multiplication of Powers
Division of Powers
Negative Exponents
Power of a Power

Formulas

a^0 = 1 (for a ≠ 0)
a^m × a^n = a^(m+n)
a^m / a^n = a^(m-n)
(a^m)^n = a^(m×n)
a^-n = 1 / a^n

Theorems

Exponent Rules
Power Rule for Exponents
Negative Exponent Rule

Suitable Grade Level

Grades 8-10