Math Problem Statement

By change into spherical co-ordinates. Evaluate ∫∫∫ xyz dx dy dz bounded by the plane x = 0 y = 0 z = 0 and the sphere x ^ 2 + y ^ 2 + z ^ 2 = 1 in the first octant.

Solution

To evaluate the given integral xyzdxdydz\iiint xyz \, dx \, dy \, dz in the first octant using spherical coordinates, we follow these steps:

Step 1: Understanding the bounds

The integral is bounded by:

  1. The planes x=0x = 0, y=0y = 0, and z=0z = 0, which define the first octant.
  2. The sphere x2+y2+z2=1x^2 + y^2 + z^2 = 1, which is a sphere of radius 1 centered at the origin.

In spherical coordinates:

  • x=ρsinϕcosθx = \rho \sin\phi \cos\theta
  • y=ρsinϕsinθy = \rho \sin\phi \sin\theta
  • z=ρcosϕz = \rho \cos\phi
  • The volume element dxdydz=ρ2sinϕdρdϕdθdx \, dy \, dz = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta

Step 2: Define the integration limits

  • ρ\rho: From 0 to 1 (radius of the sphere).
  • ϕ\phi: From 0 to π2\frac{\pi}{2} (first octant).
  • θ\theta: From 0 to π2\frac{\pi}{2} (first octant).

Step 3: Transform the integral

Substitute the spherical coordinates into the integral: xyzdxdydz=0π20π201(ρsinϕcosθ)(ρsinϕsinθ)(ρcosϕ)ρ2sinϕdρdϕdθ\iiint xyz \, dx \, dy \, dz = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^1 (\rho \sin\phi \cos\theta)(\rho \sin\phi \sin\theta)(\rho \cos\phi) \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta

Simplify the integrand: xyz=ρ3sin2ϕcosϕcosθsinθxyz = \rho^3 \sin^2\phi \cos\phi \cos\theta \sin\theta Volume element: dxdydz=ρ2sinϕdρdϕdθdx \, dy \, dz = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta Thus, the integrand becomes: ρ5sin3ϕcosϕcosθsinθ\rho^5 \sin^3\phi \cos\phi \cos\theta \sin\theta

Step 4: Separate the integral

The integral can be separated into three parts: 0π2cosθsinθdθ0π2sin3ϕcosϕdϕ01ρ5dρ\int_0^{\frac{\pi}{2}} \cos\theta \sin\theta \, d\theta \cdot \int_0^{\frac{\pi}{2}} \sin^3\phi \cos\phi \, d\phi \cdot \int_0^1 \rho^5 \, d\rho

Part 1: 0π2cosθsinθdθ\int_0^{\frac{\pi}{2}} \cos\theta \sin\theta \, d\theta

Use the substitution u=sinθu = \sin\theta, du=cosθdθdu = \cos\theta \, d\theta: 0π2cosθsinθdθ=01udu=[u22]01=12\int_0^{\frac{\pi}{2}} \cos\theta \sin\theta \, d\theta = \int_0^1 u \, du = \left[\frac{u^2}{2}\right]_0^1 = \frac{1}{2}

Part 2: 0π2sin3ϕcosϕdϕ\int_0^{\frac{\pi}{2}} \sin^3\phi \cos\phi \, d\phi

Use the substitution u=sinϕu = \sin\phi, du=cosϕdϕdu = \cos\phi \, d\phi: 0π2sin3ϕcosϕdϕ=01u3du=[u44]01=14\int_0^{\frac{\pi}{2}} \sin^3\phi \cos\phi \, d\phi = \int_0^1 u^3 \, du = \left[\frac{u^4}{4}\right]_0^1 = \frac{1}{4}

Part 3: 01ρ5dρ\int_0^1 \rho^5 \, d\rho

01ρ5dρ=[ρ66]01=16\int_0^1 \rho^5 \, d\rho = \left[\frac{\rho^6}{6}\right]_0^1 = \frac{1}{6}

Step 5: Combine the results

Multiply the results of the three integrals: 121416=148\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{6} = \frac{1}{48}

Final Answer:

xyzdxdydz=148\iiint xyz \, dx \, dy \, dz = \frac{1}{48}


Would you like further clarification or a step-by-step breakdown of any part?

Related Questions:

  1. What is the general formula for volume integrals in spherical coordinates?
  2. How does symmetry simplify integrals in spherical coordinates?
  3. What are the limits of integration for a full sphere in spherical coordinates?
  4. How do you convert between Cartesian and spherical coordinates for a given point?
  5. Why does the volume element in spherical coordinates include ρ2sinϕ\rho^2 \sin\phi?

Tip:

Always visualize the region of integration to ensure the bounds are correctly defined!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integrals
Spherical Coordinates
Multivariable Calculus

Formulas

x = ρ sin(φ) cos(θ)
y = ρ sin(φ) sin(θ)
z = ρ cos(φ)
dx dy dz = ρ^2 sin(φ) dρ dφ dθ
Triple integral formula: ∫∫∫ f(x, y, z) dx dy dz

Theorems

Change of variables in triple integrals
Spherical coordinate transformation

Suitable Grade Level

College-level (Calculus II or Multivariable Calculus)