Math Problem Statement

Use spherical coordinates to evaluate the triple integral∭Ee−(x2+y2+z2)x2+y2+z2dV,where E is the region bounded by the spheres x2+y2+z2=4 and x2+y2+z2=25.

Solution

To evaluate the given triple integral using spherical coordinates, let’s transform the integral step by step:

The integral is:

Ee(x2+y2+z2)x2+y2+z2dV\iiint_E \frac{e^{-(x^2 + y^2 + z^2)}}{x^2 + y^2 + z^2} \, dV

1. Transformation to Spherical Coordinates

In spherical coordinates:

  • x=ρsinϕcosθx = \rho \sin\phi \cos\theta,
  • y=ρsinϕsinθy = \rho \sin\phi \sin\theta,
  • z=ρcosϕz = \rho \cos\phi,
  • x2+y2+z2=ρ2x^2 + y^2 + z^2 = \rho^2,
  • Volume element dV=ρ2sinϕdρdϕdθdV = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.

Thus, the integral becomes: Eeρ2ρ2ρ2sinϕdρdϕdθ\iiint_E \frac{e^{-\rho^2}}{\rho^2} \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta

Simplify: Eeρ2sinϕdρdϕdθ\iiint_E e^{-\rho^2} \sin\phi \, d\rho \, d\phi \, d\theta

2. Define the Bounds of Integration

The region EE is bounded by the spheres ρ=2\rho = 2 and ρ=5\rho = 5:

  • ρ[2,5]\rho \in [2, 5],
  • ϕ[0,π]\phi \in [0, \pi] (entire range of polar angle),
  • θ[0,2π]\theta \in [0, 2\pi] (full revolution in the azimuthal angle).

3. Separate the Variables

The integral can now be written as: 02π0π25eρ2sinϕdρdϕdθ\int_{0}^{2\pi} \int_{0}^\pi \int_{2}^5 e^{-\rho^2} \sin\phi \, d\rho \, d\phi \, d\theta

Step 1: Integrate over θ\theta

The θ\theta-integral is straightforward: 02π1dθ=2π\int_{0}^{2\pi} 1 \, d\theta = 2\pi

Step 2: Integrate over ϕ\phi

The ϕ\phi-integral involves only sinϕ\sin\phi: 0πsinϕdϕ=[cosϕ]0π=cos(π)+cos(0)=2\int_{0}^\pi \sin\phi \, d\phi = \left[-\cos\phi\right]_0^\pi = -\cos(\pi) + \cos(0) = 2

Step 3: Integrate over ρ\rho

The ρ\rho-integral is: 25eρ2dρ\int_{2}^{5} e^{-\rho^2} \, d\rho

Let u=ρ2u = \rho^2, so du=2ρdρdu = 2\rho \, d\rho. When ρ=2\rho = 2, u=4u = 4, and when ρ=5\rho = 5, u=25u = 25. Thus: 25eρ2dρ=12425eudu\int_{2}^{5} e^{-\rho^2} \, d\rho = \frac{1}{2} \int_{4}^{25} e^{-u} \, du

The integral of eue^{-u} is: eudu=eu\int e^{-u} \, du = -e^{-u}

Apply the limits: 12425eudu=12[eu]425=12(e25+e4)\frac{1}{2} \int_{4}^{25} e^{-u} \, du = \frac{1}{2} \left[-e^{-u}\right]_4^{25} = \frac{1}{2} \left(-e^{-25} + e^{-4}\right)

4. Combine the Results

The total integral is: 2π212(e4e25)2\pi \cdot 2 \cdot \frac{1}{2} \left(e^{-4} - e^{-25}\right)

Simplify: Result=2π(e4e25)\text{Result} = 2\pi \left(e^{-4} - e^{-25}\right)

Final Answer:

2π(e4e25)\boxed{2\pi \left(e^{-4} - e^{-25}\right)}

This is the value of the given triple integral.


Let me know if you'd like further details or assistance!

Expanding Knowledge

  1. How do spherical coordinates simplify triple integrals for spherical regions?
  2. What are other examples where spherical coordinates are useful?
  3. How does one handle regions bounded by cones in spherical coordinates?
  4. Why is the Jacobian (ρ2sinϕ\rho^2 \sin\phi) critical in transformations?
  5. What is the significance of exponential decay functions in integrals?

Tip

When dealing with spherical coordinates, always ensure the bounds for ρ\rho, ϕ\phi, and θ\theta are correctly aligned to the geometry of the region!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Spherical Coordinates
Triple Integrals
Exponential Decay Functions
Region Bounded by Spheres

Formulas

x = ρ sin(φ) cos(θ)
y = ρ sin(φ) sin(θ)
z = ρ cos(φ)
x² + y² + z² = ρ²
Volume element in spherical coordinates: dV = ρ² sin(φ) dρ dφ dθ
Exponential integral: ∫ e^(-u) du = -e^(-u)

Theorems

Change of Variables Theorem
Jacobian Determinant for Coordinate Transformations

Suitable Grade Level

Undergraduate (Calculus III or Multivariable Calculus)