Math Problem Statement

মান নির্ণয় কর: tan(17π/4)cos(-11π/4) + sec(-34π/3)cosec(25π/6)

Solution

প্রদত্ত অভিব্যক্তিটি হল:

tan(17π4)cos(11π4)+sec(34π3)csc(25π6)\text{tan}\left(\frac{17\pi}{4}\right) \cos\left(-\frac{11\pi}{4}\right) + \sec\left(-\frac{34\pi}{3}\right) \csc\left(\frac{25\pi}{6}\right)

প্রথমে, প্রতিটি কোণকে 2π2\pi বা 360360^\circ এর গুণিতকের মধ্যে রূপান্তর করি:

  1. tan(17π4)\tan\left(\frac{17\pi}{4}\right): 17π4=4π+π4=2(2π)+π4\frac{17\pi}{4} = 4\pi + \frac{\pi}{4} = 2(2\pi) + \frac{\pi}{4} যেহেতু 2π2\pi এর গুণিতক যোগ করলে কোণের মান অপরিবর্তিত থাকে, তাই: tan(17π4)=tan(π4)=1\tan\left(\frac{17\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1

  2. cos(11π4)\cos\left(-\frac{11\pi}{4}\right): 11π4=2π3π4=3π4(যেহেতু 2π যোগ করলে কোণের মান অপরিবর্তিত থাকে)-\frac{11\pi}{4} = -2\pi - \frac{3\pi}{4} = -\frac{3\pi}{4} \quad (\text{যেহেতু } -2\pi \text{ যোগ করলে কোণের মান অপরিবর্তিত থাকে}) cos(3π4)=cos(3π4)=12\cos\left(-\frac{3\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}

  3. sec(34π3)\sec\left(-\frac{34\pi}{3}\right): 34π3=36π3+2π3=12π+2π3-\frac{34\pi}{3} = -\frac{36\pi}{3} + \frac{2\pi}{3} = -12\pi + \frac{2\pi}{3} যেহেতু 12π-12\pi হল 2π2\pi এর গুণিতক, তাই: sec(34π3)=sec(2π3)=sec(π3)=2\sec\left(-\frac{34\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right) = -\sec\left(\frac{\pi}{3}\right) = -2

  4. csc(25π6)\csc\left(\frac{25\pi}{6}\right): 25π6=4π+π6=2(2π)+π6\frac{25\pi}{6} = 4\pi + \frac{\pi}{6} = 2(2\pi) + \frac{\pi}{6} csc(25π6)=csc(π6)=2\csc\left(\frac{25\pi}{6}\right) = \csc\left(\frac{\pi}{6}\right) = 2

এখন, সমস্ত উপাদানকে একত্রিত করি:

tan(17π4)cos(11π4)+sec(34π3)csc(25π6)=1×(12)+(2)×2\tan\left(\frac{17\pi}{4}\right) \cos\left(-\frac{11\pi}{4}\right) + \sec\left(-\frac{34\pi}{3}\right) \csc\left(\frac{25\pi}{6}\right) = 1 \times \left(-\frac{1}{\sqrt{2}}\right) + (-2) \times 2

=124= -\frac{1}{\sqrt{2}} - 4

=12422=1+422= -\frac{1}{\sqrt{2}} - \frac{4\sqrt{2}}{\sqrt{2}} = -\frac{1 + 4\sqrt{2}}{\sqrt{2}}

তাহলে চূড়ান্ত মান:

=1+422= -\frac{1 + 4\sqrt{2}}{\sqrt{2}}

আপনার আরও বিস্তারিত জানা বা কোনো প্রশ্ন আছে কি?

Related Questions:

  1. What is the value of tan(π4)\tan\left(\frac{\pi}{4}\right) and why?
  2. How do you simplify trigonometric functions with negative angles?
  3. What is the periodicity of the secant function?
  4. How do you convert any angle to the first quadrant equivalent?
  5. Why does csc(π6)\csc(\frac{\pi}{6}) equal 2?

Tip: Remember that the period of the tangent function is π\pi and for cosine and sine, it's 2π2\pi.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry

Formulas

Trigonometric functions: tan, cos, sec, csc

Theorems

-

Suitable Grade Level

Advanced High School