Math Problem Statement

Evaluate the sum of the infinite series \( \sum_{n=1}^{\infty} (2 - \sqrt{3})^n \).

Solution

The mathematical expression in the image asks for the sum of the infinite series:

n=1(23)n\sum_{n=1}^\infty (2 - \sqrt{3})^n

Solution:

This is a geometric series with the general form:

n=1an=a1a,if a<1\sum_{n=1}^\infty a^n = \frac{a}{1-a}, \quad \text{if } |a| < 1

Here, a=23a = 2 - \sqrt{3}.

Step 1: Check convergence

For the series to converge, we need 23<1|2 - \sqrt{3}| < 1.

Since 31.732\sqrt{3} \approx 1.732, we have:

230.268,and 0.268<1.2 - \sqrt{3} \approx 0.268, \quad \text{and } |0.268| < 1.

Thus, the series converges.

Step 2: Use the formula for the sum of a geometric series

The series starts from n=1n=1, so the formula becomes:

n=1(23)n=(23)1(23)\sum_{n=1}^\infty (2 - \sqrt{3})^n = \frac{(2 - \sqrt{3})}{1 - (2 - \sqrt{3})}

Step 3: Simplify the denominator

1(23)=12+3=31.1 - (2 - \sqrt{3}) = 1 - 2 + \sqrt{3} = \sqrt{3} - 1.

Substitute back into the formula:

n=1(23)n=2331.\sum_{n=1}^\infty (2 - \sqrt{3})^n = \frac{2 - \sqrt{3}}{\sqrt{3} - 1}.

Step 4: Rationalize the denominator

To simplify 2331\frac{2 - \sqrt{3}}{\sqrt{3} - 1}, multiply numerator and denominator by 3+1\sqrt{3} + 1:

23313+13+1=(23)(3+1)(31)(3+1).\frac{2 - \sqrt{3}}{\sqrt{3} - 1} \cdot \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{(2 - \sqrt{3})(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}.

Simplify the denominator using (31)(3+1)=31=2(\sqrt{3} - 1)(\sqrt{3} + 1) = 3 - 1 = 2.

Now simplify the numerator:

(23)(3+1)=23+233=(31).(2 - \sqrt{3})(\sqrt{3} + 1) = 2\sqrt{3} + 2 - 3 - \sqrt{3} = (\sqrt{3} - 1).

So the fraction becomes:

312.\frac{\sqrt{3} - 1}{2}.

Final Answer:

n=1(23)n=312.\sum_{n=1}^\infty (2 - \sqrt{3})^n = \frac{\sqrt{3} - 1}{2}.

Let me know if you'd like further details or clarifications!


Related Questions:

  1. How can you verify if a series converges or diverges?
  2. What is the general formula for a finite geometric series?
  3. What happens if a1|a| \geq 1 in a geometric series?
  4. Can you compute the sum of n=0(23)n\sum_{n=0}^\infty (2 - \sqrt{3})^n?
  5. How do you rationalize denominators with surds like 31\sqrt{3} - 1?

Tip:

Always check the convergence criteria (a<1|a| < 1) before attempting to sum an infinite geometric series!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometric Series
Convergence of Series

Formulas

Sum of an infinite geometric series: \( \sum_{n=1}^{\infty} a^n = \frac{a}{1 - a} \) if \( |a| < 1 \)

Theorems

Convergence condition for geometric series

Suitable Grade Level

Grades 10-12